Difference between revisions of "Lie ternary system"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | l0587501.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/L058/L.0508750 Lie ternary system | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A [[Vector space|vector space]] $ \mathfrak m $ | ||
+ | with a trilinear composition | ||
+ | |||
+ | $$ | ||
+ | \mathfrak m \times \mathfrak m \times \mathfrak m \rightarrow \mathfrak m ,\ \ | ||
+ | ( X , Y , Z ) \rightarrow [ X , Y , Z ] , | ||
+ | $$ | ||
satisfying the following conditions: | satisfying the following conditions: | ||
− | + | $$ | |
+ | [ X , X , Y ] = 0 , | ||
+ | $$ | ||
− | + | $$ | |
+ | [ X , Y , Z ] + [ Y , Z , X ] + [ Z , X , Y ] = 0 , | ||
+ | $$ | ||
− | + | $$ | |
+ | [ X , Y , [ Z , U , V ] ] = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | [ [ X , Y , Z ] , U , V ] + [ Z , [ X , Y | ||
+ | , U ] , V ] + [ Z , U , [ X , Y , V ] ] . | ||
+ | $$ | ||
− | If | + | If $ \mathfrak g $ |
+ | is a [[Lie algebra|Lie algebra]] and $ \mathfrak m \subset \mathfrak g $ | ||
+ | is a subspace such that $ [ [ X , Y ] , Z ] \in \mathfrak m $ | ||
+ | for any $ X , Y , Z \in \mathfrak m $, | ||
+ | then the operation | ||
− | + | $$ | |
+ | [ X , Y , Z ] = [ [ X , Y ] , Z ] | ||
+ | $$ | ||
− | converts | + | converts $ \mathfrak m $ |
+ | into a Lie ternary system. Conversely, every Lie ternary system can be obtained in this way from some Lie algebra. | ||
− | The category of finite-dimensional Lie ternary systems over the field | + | The category of finite-dimensional Lie ternary systems over the field $ \mathbf R $ |
+ | is equivalent to the category of simply-connected symmetric homogeneous spaces (see [[Symmetric space|Symmetric space]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Loos, "Symmetric spaces" , '''1''' , Benjamin (1969)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Loos, "Symmetric spaces" , '''1''' , Benjamin (1969)</TD></TR></table> |
Latest revision as of 22:16, 5 June 2020
A vector space $ \mathfrak m $
with a trilinear composition
$$ \mathfrak m \times \mathfrak m \times \mathfrak m \rightarrow \mathfrak m ,\ \ ( X , Y , Z ) \rightarrow [ X , Y , Z ] , $$
satisfying the following conditions:
$$ [ X , X , Y ] = 0 , $$
$$ [ X , Y , Z ] + [ Y , Z , X ] + [ Z , X , Y ] = 0 , $$
$$ [ X , Y , [ Z , U , V ] ] = $$
$$ = \ [ [ X , Y , Z ] , U , V ] + [ Z , [ X , Y , U ] , V ] + [ Z , U , [ X , Y , V ] ] . $$
If $ \mathfrak g $ is a Lie algebra and $ \mathfrak m \subset \mathfrak g $ is a subspace such that $ [ [ X , Y ] , Z ] \in \mathfrak m $ for any $ X , Y , Z \in \mathfrak m $, then the operation
$$ [ X , Y , Z ] = [ [ X , Y ] , Z ] $$
converts $ \mathfrak m $ into a Lie ternary system. Conversely, every Lie ternary system can be obtained in this way from some Lie algebra.
The category of finite-dimensional Lie ternary systems over the field $ \mathbf R $ is equivalent to the category of simply-connected symmetric homogeneous spaces (see Symmetric space).
References
[1] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) |
[2] | O. Loos, "Symmetric spaces" , 1 , Benjamin (1969) |
Lie ternary system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lie_ternary_system&oldid=18380