Difference between revisions of "Fiducial distribution"
(Importing text file) |
(latex details) |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | f0400801.png | ||
| + | $#A+1 = 63 n = 0 | ||
| + | $#C+1 = 63 : ~/encyclopedia/old_files/data/F040/F.0400080 Fiducial distribution | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A distribution $ P _ {x} ^ {*} $ | |
| + | of the parameter $ \theta $ | ||
| + | from a family of distributions $ {\mathcal P} = \{ {P _ \theta } : {\theta \in \Theta } \} $ | ||
| + | of an observation $ x $. | ||
| + | It was introduced by R.A. Fisher [[#References|[1]]] for numerical $ \theta $ | ||
| + | and $ x $ | ||
| + | in the case when the distribution function $ F ( x \mid \theta ) $ | ||
| + | of $ x $ | ||
| + | decreases as $ \theta $ | ||
| + | increases in such a way that $ F ^ { * } ( \theta | x) = 1 - F ( x | \theta ) $, | ||
| + | considered as a function of $ \theta $ | ||
| + | for fixed $ x $, | ||
| + | has the properties of a distribution function (in such a situation one often makes use of a [[sufficient statistic]] in the role of $ x $). | ||
| − | + | A fiducial distribution is defined for invariant families of distributions (cf. [[#References|[2]]]–[[#References|[4]]]). Namely, suppose that a group $ G $ | |
| + | of transformations $ g $ | ||
| + | acts on the sets $ X $ | ||
| + | and $ \Theta $. | ||
| + | A family of distributions is called invariant if $ gx $ | ||
| + | has the distribution $ P _ {g \theta } $ | ||
| + | when $ x $ | ||
| + | has the distribution $ P _ \theta $. | ||
| + | In this case one considers equivariant decision rules $ \delta : X \rightarrow D $( | ||
| + | i.e. such that $ \delta ( gx) = g \delta ( x) $ | ||
| + | for all $ x $ | ||
| + | and $ g $) | ||
| + | and invariant loss functions $ L _ \theta ( d) $( | ||
| + | i.e. such that $ L _ {g \theta } ( gd) = L _ \theta ( d) $ | ||
| + | for all $ \theta $, | ||
| + | $ d $ | ||
| + | and $ g $). | ||
| + | If the action of $ G $ | ||
| + | on $ \Theta $ | ||
| + | is transitive, then the family $ {\mathcal P} $ | ||
| + | has a certain property of homogeneity: For a fixed parameter value $ \theta _ {0} $ | ||
| + | and an observation $ x $ | ||
| + | with the distribution $ P _ {\theta _ {0} } $, | ||
| + | the distribution of $ gx $ | ||
| + | runs through the whole family $ {\mathcal P} $ | ||
| + | as $ g $ | ||
| + | runs through $ G $. | ||
| + | Suppose that $ D $ | ||
| + | is a set of probability measures on $ \Theta $( | ||
| + | it is assumed that $ \sigma $- | ||
| + | algebras $ {\mathcal B} ( \Theta ) $ | ||
| + | and $ {\mathcal B} ( X) $ | ||
| + | are given such that the transformations in $ G $ | ||
| + | are measurable). Let the action of $ G $ | ||
| + | on $ D $ | ||
| + | be given by $ ( g \alpha ) ( B) = \alpha ( g ^ {-1} ( B)) $, | ||
| + | $ G \in {\mathcal B} ( \Theta ) $. | ||
| + | The fiducial distribution is described by the family $ {\mathcal P} ^ {*} = \{ {P _ {x} ^ {*} } : {x \in X } \} $ | ||
| + | of probability measures on $ \Theta $ | ||
| + | that minimize the risk $ \int L _ \theta ( \delta ( x)) dP _ \theta ( x) $ | ||
| + | in the class of equivariant decision rules for every invariant loss function satisfying the following condition of unbiasedness type | ||
| + | |||
| + | $$ | ||
| + | \int\limits L _ \theta ( \alpha ) \ | ||
| + | d \beta ( \theta ) \geq \ | ||
| + | \int\limits L _ \theta ( \beta ) \ | ||
| + | d \beta ( \theta ). | ||
| + | $$ | ||
| + | |||
| + | If $ G $ | ||
| + | acts transitively on $ X $, | ||
| + | then the family of the fiducial distributions is uniquely distinguished by the requirements that $ {\mathcal P} ^ {*} = \{ {P _ {x} ^ {*} } : {x \in X } \} $ | ||
| + | is invariant and that the probable and fiducial probabilities are equal, $ P _ \theta \{ \theta \in S ( x) \} = P _ {x} ^ {*} \{ \theta \in S ( x) \} $, | ||
| + | for invariant families $ S ( x) $( | ||
| + | $ S ( x) $ | ||
| + | is called invariant if $ \theta \in S ( x) $, | ||
| + | $ g \in G $ | ||
| + | imply that $ g \theta \in S ( gx) $). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.A. Fisher, "Inverse probability" ''Proc. Cambridge Philos. Soc.'' , '''26''' (1930) pp. 528–535</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.A.S. Fraser, "The fiducial method and invariance" ''Biometrika'' , '''48''' (1961) pp. 261–280</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.P. Klimov, "On the fiducial approach in statistics" ''Soviet Math. Dokl.'' , '''11''' : 2 (1970) pp. 442–444 ''Dokl. Akad. Nauk SSSR'' , '''191''' : 4 (1970) pp. 763–765</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.A. Fisher, "Inverse probability" ''Proc. Cambridge Philos. Soc.'' , '''26''' (1930) pp. 528–535</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> D.A.S. Fraser, "The fiducial method and invariance" ''Biometrika'' , '''48''' (1961) pp. 261–280</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.P. Klimov, "On the fiducial approach in statistics" ''Soviet Math. Dokl.'' , '''11''' : 2 (1970) pp. 442–444 ''Dokl. Akad. Nauk SSSR'' , '''191''' : 4 (1970) pp. 763–765</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Latest revision as of 20:28, 17 January 2024
A distribution $ P _ {x} ^ {*} $
of the parameter $ \theta $
from a family of distributions $ {\mathcal P} = \{ {P _ \theta } : {\theta \in \Theta } \} $
of an observation $ x $.
It was introduced by R.A. Fisher [1] for numerical $ \theta $
and $ x $
in the case when the distribution function $ F ( x \mid \theta ) $
of $ x $
decreases as $ \theta $
increases in such a way that $ F ^ { * } ( \theta | x) = 1 - F ( x | \theta ) $,
considered as a function of $ \theta $
for fixed $ x $,
has the properties of a distribution function (in such a situation one often makes use of a sufficient statistic in the role of $ x $).
A fiducial distribution is defined for invariant families of distributions (cf. [2]–[4]). Namely, suppose that a group $ G $ of transformations $ g $ acts on the sets $ X $ and $ \Theta $. A family of distributions is called invariant if $ gx $ has the distribution $ P _ {g \theta } $ when $ x $ has the distribution $ P _ \theta $. In this case one considers equivariant decision rules $ \delta : X \rightarrow D $( i.e. such that $ \delta ( gx) = g \delta ( x) $ for all $ x $ and $ g $) and invariant loss functions $ L _ \theta ( d) $( i.e. such that $ L _ {g \theta } ( gd) = L _ \theta ( d) $ for all $ \theta $, $ d $ and $ g $). If the action of $ G $ on $ \Theta $ is transitive, then the family $ {\mathcal P} $ has a certain property of homogeneity: For a fixed parameter value $ \theta _ {0} $ and an observation $ x $ with the distribution $ P _ {\theta _ {0} } $, the distribution of $ gx $ runs through the whole family $ {\mathcal P} $ as $ g $ runs through $ G $. Suppose that $ D $ is a set of probability measures on $ \Theta $( it is assumed that $ \sigma $- algebras $ {\mathcal B} ( \Theta ) $ and $ {\mathcal B} ( X) $ are given such that the transformations in $ G $ are measurable). Let the action of $ G $ on $ D $ be given by $ ( g \alpha ) ( B) = \alpha ( g ^ {-1} ( B)) $, $ G \in {\mathcal B} ( \Theta ) $. The fiducial distribution is described by the family $ {\mathcal P} ^ {*} = \{ {P _ {x} ^ {*} } : {x \in X } \} $ of probability measures on $ \Theta $ that minimize the risk $ \int L _ \theta ( \delta ( x)) dP _ \theta ( x) $ in the class of equivariant decision rules for every invariant loss function satisfying the following condition of unbiasedness type
$$ \int\limits L _ \theta ( \alpha ) \ d \beta ( \theta ) \geq \ \int\limits L _ \theta ( \beta ) \ d \beta ( \theta ). $$
If $ G $ acts transitively on $ X $, then the family of the fiducial distributions is uniquely distinguished by the requirements that $ {\mathcal P} ^ {*} = \{ {P _ {x} ^ {*} } : {x \in X } \} $ is invariant and that the probable and fiducial probabilities are equal, $ P _ \theta \{ \theta \in S ( x) \} = P _ {x} ^ {*} \{ \theta \in S ( x) \} $, for invariant families $ S ( x) $( $ S ( x) $ is called invariant if $ \theta \in S ( x) $, $ g \in G $ imply that $ g \theta \in S ( gx) $).
References
| [1] | R.A. Fisher, "Inverse probability" Proc. Cambridge Philos. Soc. , 26 (1930) pp. 528–535 |
| [2] | D.A.S. Fraser, "The fiducial method and invariance" Biometrika , 48 (1961) pp. 261–280 |
| [3] | G.P. Klimov, "On the fiducial approach in statistics" Soviet Math. Dokl. , 11 : 2 (1970) pp. 442–444 Dokl. Akad. Nauk SSSR , 191 : 4 (1970) pp. 763–765 |
| [4] | G.P. Klimov, "Invariant inferences in statistics" , Moscow (1973) (In Russian) |
Comments
There has been a continued controversy as to what Fisher really meant by fiducial distributions, many authors finding the idea quite meaningless. See, e.g., [a1] for a recent survey.
References
| [a1] | J.G. Pedersen, "Fiducial inference" Internat. Stat. Rev. , 46 (1978) pp. 147–170 |
Fiducial distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fiducial_distribution&oldid=18272