Namespaces
Variants
Actions

Difference between revisions of "Saddle node"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (gather refs)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A type of arrangement of the trajectories in a neighbourhood of a singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830401.png" /> of an [[Autonomous system|autonomous system]] of second-order ordinary differential equations
+
<!--
 +
s0830401.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/S083/S.0803040 Saddle node
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830402.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830403.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830404.png" /> is the domain of uniqueness. This type is characterized as follows. Suppose that a certain neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830405.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830406.png" /> is partitioned into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830407.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830408.png" />) curvilinear sectors (cf. [[Sector in the theory of ordinary differential equations|Sector in the theory of ordinary differential equations]]) by semi-trajectories (the separatrices of the saddle node) approaching <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s0830409.png" />. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304010.png" /> of these sectors, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304011.png" />, are saddle sectors and that the others are open nodal sectors, and suppose also that each semi-trajectory approaching <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304012.png" />, completed with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304013.png" />, touches it in a definite direction. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304014.png" /> is called a saddle node.
+
A type of arrangement of the trajectories in a neighbourhood of a singular point  $  x _ {0} $
 +
of an [[Autonomous system|autonomous system]] of second-order ordinary differential equations
  
A saddle node is unstable in the sense of Lyapunov (cf. [[Lyapunov stability|Lyapunov stability]]). Its Poincaré index is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304015.png" /> (cf. [[Singular point|Singular point]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304016.png" /> and the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304017.png" />, then the singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304018.png" /> can be a saddle node for (*) only when the eigenvalues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304020.png" /> satisfy one of the following conditions:
+
$$ \tag{* }
 +
\dot{x}  = f ( x),\ \
 +
x \in \mathbf R  ^ {2} ,\ \
 +
f: G \rightarrow \mathbf R  ^ {2} ,
 +
$$
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304021.png" />;
+
$  f \in C ( G) $,
 +
where  $  G $
 +
is the domain of uniqueness. This type is characterized as follows. Suppose that a certain neighbourhood  $  U $
 +
of  $  x _ {0} $
 +
is partitioned into  $  m $(
 +
$  3 \leq  m < + \infty $)
 +
curvilinear sectors (cf. [[Sector in the theory of ordinary differential equations|Sector in the theory of ordinary differential equations]]) by semi-trajectories (the separatrices of the saddle node) approaching  $  x _ {0} $.
 +
Suppose that  $  h $
 +
of these sectors,  $  2 \leq  h < m $,
 +
are saddle sectors and that the others are open nodal sectors, and suppose also that each semi-trajectory approaching  $  x _ {0} $,
 +
completed with  $  x _ {0} $,
 +
touches it in a definite direction. Then  $  x _ {0} $
 +
is called a saddle node.
  
b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304022.png" />.
+
A saddle node is unstable in the sense of Lyapunov (cf. [[Lyapunov stability|Lyapunov stability]]). Its Poincaré index is  $  1 - ( h/2) $(
 +
cf. [[Singular point|Singular point]]). If  $  f \in C  ^ {1} ( G) $
 +
and the matrix  $  A = f ^ { \prime } ( x _ {0} ) \neq 0 $,
 +
then the singular point  $  x _ {0} $
 +
can be a saddle node for (*) only when the eigenvalues  $  \lambda _ {1} , \lambda _ {2} $
 +
of  $  A $
 +
satisfy one of the following conditions:
  
In any of these cases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304023.png" /> can also be a [[Saddle|saddle]] or a [[Node|node]] for (*), and in case b), also a point of another type. If it is a saddle node, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304025.png" />, and all the semi-trajectories of the system that approach <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304026.png" /> touch at this point the directions defined by the eigenvectors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304027.png" /> (see Fig. aand Fig. b, where the heavy lines are the separatrices at the saddle node <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304028.png" />, and the arrows indicate the direction of motion along the trajectories of the system as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304029.png" /> increases; they can also be in the opposite direction).
+
a)  $  \lambda _ {1} = 0 \neq \lambda _ {2} $;
 +
 
 +
b)  $  \lambda _ {1} = \lambda _ {2} = 0 $.
 +
 
 +
In any of these cases $  x _ {0} $
 +
can also be a [[Saddle|saddle]] or a [[Node|node]] for (*), and in case b), also a point of another type. If it is a saddle node, then $  m = 3 $,  
 +
$  h = 2 $,  
 +
and all the semi-trajectories of the system that approach $  x _ {0} $
 +
touch at this point the directions defined by the eigenvectors of $  A $(
 +
see Fig. aand Fig. b, where the heavy lines are the separatrices at the saddle node $  x _ {0} = 0 $,  
 +
and the arrows indicate the direction of motion along the trajectories of the system as $  t $
 +
increases; they can also be in the opposite direction).
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s083040a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/s083040a.gif" />
Line 20: Line 62:
  
 
Figure: s083040b
 
Figure: s083040b
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.N. Bautin,  E.A. Leontovich,  "Methods and means for a qualitative investigation of dynamical systems on the plane" , Moscow  (1976)  (In Russian)</TD></TR></table>
 
 
 
  
 
====Comments====
 
====Comments====
The flow near a saddle node does not enjoy structural stability: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304030.png" /> is a saddle node for (*), there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304032.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304033.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304034.png" /> there is a system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304035.png" /> having no equilibrium in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304036.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083040/s08304039.png" />. However, the saddle node [[Bifurcation|bifurcation]] is robust and cannot be perturbed away ([[#References|[a1]]]) (cf. also [[Rough system|Rough system]]).
+
The flow near a saddle node does not enjoy structural stability: If $  x _ {0} $
 +
is a saddle node for (*), there is a neighbourhood $  N $
 +
of $  x _ {0} $
 +
in $  \mathbf R  ^ {2} $
 +
such that for any $  \epsilon > 0 $
 +
there is a system $  \dot{x} = y( x) $
 +
having no equilibrium in $  N $,  
 +
such that $  | f- g | < \epsilon $
 +
and  $  | ( \partial  f / \partial  x _ {i} ) - ( \partial  g/ \partial  x _ {i} ) | < \epsilon $,
 +
$  i = 1, 2 $.  
 +
However, the saddle node [[Bifurcation|bifurcation]] is robust and cannot be perturbed away ([[#References|[a1]]]) (cf. also [[Rough system|Rough system]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Guckenheimer,   P. Holmes,   "Non-linear oscillations, dynamical systems, and bifurcations of vector fields" , Springer  (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.A. Andronov,   E.A. Leontovich,   I.I. Gordon,   A.G. Maier,   "Qualitative theory of second-order dynamic systems" , Wiley  (1973)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N.N. Bautin, E.A. Leontovich, "Methods and means for a qualitative investigation of dynamical systems on the plane" , Moscow  (1976)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Guckenheimer, P. Holmes, "Non-linear oscillations, dynamical systems, and bifurcations of vector fields" , Springer  (1983)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley  (1973)  (Translated from Russian)</TD></TR>
 +
</table>
 +
 
 +
{{OldImage}}

Latest revision as of 09:06, 1 October 2023


A type of arrangement of the trajectories in a neighbourhood of a singular point $ x _ {0} $ of an autonomous system of second-order ordinary differential equations

$$ \tag{* } \dot{x} = f ( x),\ \ x \in \mathbf R ^ {2} ,\ \ f: G \rightarrow \mathbf R ^ {2} , $$

$ f \in C ( G) $, where $ G $ is the domain of uniqueness. This type is characterized as follows. Suppose that a certain neighbourhood $ U $ of $ x _ {0} $ is partitioned into $ m $( $ 3 \leq m < + \infty $) curvilinear sectors (cf. Sector in the theory of ordinary differential equations) by semi-trajectories (the separatrices of the saddle node) approaching $ x _ {0} $. Suppose that $ h $ of these sectors, $ 2 \leq h < m $, are saddle sectors and that the others are open nodal sectors, and suppose also that each semi-trajectory approaching $ x _ {0} $, completed with $ x _ {0} $, touches it in a definite direction. Then $ x _ {0} $ is called a saddle node.

A saddle node is unstable in the sense of Lyapunov (cf. Lyapunov stability). Its Poincaré index is $ 1 - ( h/2) $( cf. Singular point). If $ f \in C ^ {1} ( G) $ and the matrix $ A = f ^ { \prime } ( x _ {0} ) \neq 0 $, then the singular point $ x _ {0} $ can be a saddle node for (*) only when the eigenvalues $ \lambda _ {1} , \lambda _ {2} $ of $ A $ satisfy one of the following conditions:

a) $ \lambda _ {1} = 0 \neq \lambda _ {2} $;

b) $ \lambda _ {1} = \lambda _ {2} = 0 $.

In any of these cases $ x _ {0} $ can also be a saddle or a node for (*), and in case b), also a point of another type. If it is a saddle node, then $ m = 3 $, $ h = 2 $, and all the semi-trajectories of the system that approach $ x _ {0} $ touch at this point the directions defined by the eigenvectors of $ A $( see Fig. aand Fig. b, where the heavy lines are the separatrices at the saddle node $ x _ {0} = 0 $, and the arrows indicate the direction of motion along the trajectories of the system as $ t $ increases; they can also be in the opposite direction).

Figure: s083040a

Figure: s083040b

Comments

The flow near a saddle node does not enjoy structural stability: If $ x _ {0} $ is a saddle node for (*), there is a neighbourhood $ N $ of $ x _ {0} $ in $ \mathbf R ^ {2} $ such that for any $ \epsilon > 0 $ there is a system $ \dot{x} = y( x) $ having no equilibrium in $ N $, such that $ | f- g | < \epsilon $ and $ | ( \partial f / \partial x _ {i} ) - ( \partial g/ \partial x _ {i} ) | < \epsilon $, $ i = 1, 2 $. However, the saddle node bifurcation is robust and cannot be perturbed away ([a1]) (cf. also Rough system).

References

[1] N.N. Bautin, E.A. Leontovich, "Methods and means for a qualitative investigation of dynamical systems on the plane" , Moscow (1976) (In Russian)
[a1] J. Guckenheimer, P. Holmes, "Non-linear oscillations, dynamical systems, and bifurcations of vector fields" , Springer (1983)
[a2] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Saddle node. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Saddle_node&oldid=18239
This article was adapted from an original article by A.F. Andreev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article