|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405801.png" />-dimensional differential form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405802.png" /> on an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405803.png" /> such that: 1) the co-mass (cf. [[Mass and co-mass|Mass and co-mass]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405804.png" /> for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405805.png" />; and 2) there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405806.png" /> with
| + | <!-- |
| + | f0405801.png |
| + | $#A+1 = 79 n = 0 |
| + | $#C+1 = 79 : ~/encyclopedia/old_files/data/F040/F.0400580 Flat form |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405807.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | for any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405808.png" /> satisfying the following condition: There exists a measurable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f0405809.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058010.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058011.png" /> is measurable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058012.png" /> and on any one of its boundaries <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058013.png" />, making up <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058014.png" />; moreover,
| + | A measurable $ r $- |
| + | dimensional differential form $ \omega $ |
| + | on an open set $ R \subset E ^ {n} $ |
| + | such that: 1) the co-mass (cf. [[Mass and co-mass|Mass and co-mass]]) $ | \omega | _ {0} \leq N _ {1} $ |
| + | for a given $ N _ {1} $; |
| + | and 2) there exists an $ N _ {2} $ |
| + | with |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058015.png" /></td> </tr></table>
| + | $$ |
| + | \left |\; \int\limits _ {\partial \sigma ^ {r + 1 } } \omega |
| + | \right | \leq N _ {2} | \sigma ^ {r+1} | |
| + | $$ |
| | | |
− | Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058016.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058017.png" />-dimensional Lebesgue measure of the intersection of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058018.png" /> with some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058019.png" />-dimensional plane.
| + | for any simplex $ \sigma ^ {r+ 1 } $ |
| + | satisfying the following condition: There exists a measurable $ Q \subset R $, |
| + | $ | R \setminus Q | _ {n} = 0 $, |
| + | such that $ \omega $ |
| + | is measurable on $ \sigma ^ {r+ 1 } $ |
| + | and on any one of its boundaries $ \sigma ^ {r} $, |
| + | making up $ \partial \sigma ^ {r+ 1 } $; |
| + | moreover, |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058020.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058021.png" />-dimensional flat cochain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058022.png" />, there exists a bounded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058023.png" />-dimensional form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058024.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058025.png" /> which is measurable in any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058026.png" /> with respect to the plane which contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058027.png" />, and
| + | $$ |
| + | | \sigma ^ {r + 1 } \setminus Q | _ {r + 1 } = 0,\ \ |
| + | | \sigma ^ {r} \setminus Q | _ {r} = 0. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058028.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | Here, $ | M | _ {s} $ |
| + | denotes the $ s $- |
| + | dimensional Lebesgue measure of the intersection of the set $ M $ |
| + | with some $ s $- |
| + | dimensional plane. |
| + | |
| + | If $ X $ |
| + | is an $ r $-dimensional flat cochain in $ R $, |
| + | there exists a bounded $ r $-dimensional form $ \omega _ {X} $ |
| + | in $ R $ |
| + | which is measurable in any simplex $ \sigma ^ {r} $ |
| + | with respect to the plane which contains $ \sigma ^ {r} $, |
| + | and |
| + | |
| + | $$ \tag{1 } |
| + | X \sigma ^ {r} = \ |
| + | \int\limits _ {\sigma ^ {r} } \omega _ {X} . |
| + | $$ |
| | | |
| Also | | Also |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058029.png" /></td> </tr></table>
| + | $$ |
| + | | \omega _ {X} | _ {0} = | X |,\ \ |
| + | | \omega _ {dX} | _ {0} = | dX |, |
| + | $$ |
| + | |
| + | where $ | X | $ |
| + | is the co-mass of the cochain $ X $. |
| + | Conversely, to any $ r $- |
| + | dimensional flat form $ \omega $ |
| + | in $ R $ |
| + | there corresponds, according to formula (1), a unique $ r $- |
| + | dimensional flat cochain $ X _ \omega $ |
| + | for any simplex $ \sigma ^ {r} $ |
| + | which satisfies the above condition; moreover, |
| + | |
| + | $$ |
| + | | X _ \omega | \leq N _ {1} ,\ \ |
| + | | d X _ \omega | \leq N _ {2} . |
| + | $$ |
| + | |
| + | The form $ \omega $ |
| + | and the cochain $ X $ |
| + | are called associated. Forms associated with the same cochain are equivalent, i.e. are equal almost-everywhere in $ R $, |
| + | and comprise the flat representative. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058030.png" /> is the co-mass of the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058031.png" />. Conversely, to any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058032.png" />-dimensional flat form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058033.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058034.png" /> there corresponds, according to formula (1), a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058035.png" />-dimensional flat cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058036.png" /> for any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058037.png" /> which satisfies the above condition; moreover,
| + | There is a one-to-one correspondence between the $ n $-dimensional flat cochains $ X $ |
| + | and the classes of equivalent bounded measurable functions $ \phi ( p) $, |
| + | given by $ \omega _ {X} = \phi ( p) dp $, |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058038.png" /></td> </tr></table>
| + | $$ |
| + | \phi ( p) = \ |
| + | \lim\limits _ {i \rightarrow \infty } \ |
| | | |
− | The form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058039.png" /> and the cochain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058040.png" /> are called associated. Forms associated with the same cochain are equivalent, i.e. are equal almost-everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058041.png" />, and comprise the flat representative.
| + | \frac{X \sigma _ {i} }{| \sigma _ {i} | } |
| + | , |
| + | $$ |
| | | |
− | There is a one-to-one correspondence between the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058042.png" />-dimensional flat cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058043.png" /> and the classes of equivalent bounded measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058044.png" />, given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058045.png" />, and
| + | where $ \sigma _ {1} , \sigma _ {2} ,\dots $ |
| + | is a sequence of $ n $- |
| + | dimensional simplices contracting towards the point $ p $ |
| + | such that their diameters tend to zero, but such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058046.png" /></td> </tr></table>
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058047.png" /> is a sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058048.png" />-dimensional simplices contracting towards the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058049.png" /> such that their diameters tend to zero, but such that
| + | \frac{| \sigma _ {i} | }{( \mathop{\rm diam} \sigma _ {i} ) ^ {n} } |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058050.png" /></td> </tr></table>
| + | \geq \eta |
| + | $$ |
| | | |
− | for some value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058051.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058052.png" /> is the volume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058053.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058054.png" />. | + | for some value of $ \eta $, |
| + | where $ | \sigma _ {i} | $ |
| + | is the volume $ \sigma _ {i} $ |
| + | for all $ i $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058055.png" /> be a measurable summable function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058056.png" /> whose values are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058057.png" />-vectors; it is said to correspond to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058058.png" />-dimensional flat chain if | + | Let $ \alpha ( p) $ |
| + | be a measurable summable function in $ R $ |
| + | whose values are $ r $- |
| + | vectors; it is said to correspond to an $ r $- |
| + | dimensional flat chain if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058059.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
| + | \int\limits _ { R } |
| + | \omega _ {X} \cdot \alpha = X \cdot A |
| + | $$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058060.png" />-dimensional flat cochains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058061.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058062.png" /> is then called a Lebesgue chain). The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058063.png" /> is a linear one-to-one mapping of the set of equivalence classes of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058064.png" /> into the space of flat chains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058065.png" />; also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058066.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058067.png" /> is the mass of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058068.png" />, (cf. [[Mass and co-mass|Mass and co-mass]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058069.png" /> is the mass of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058071.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058072.png" />. In addition, the set of images of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058073.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058074.png" />. | + | for all $ r $- |
| + | dimensional flat cochains $ X $ |
| + | ($ A $ |
| + | is then called a Lebesgue chain). The mapping $ \alpha \rightarrow A $ |
| + | is a linear one-to-one mapping of the set of equivalence classes of functions $ \alpha ( p) $ |
| + | into the space of flat chains $ C _ {r} ^ \flat ( R) $; |
| + | also, $ | A | = \int _ {R} | \alpha | _ {0} $, |
| + | where $ | A | $ |
| + | is the mass of the chain $ A $, |
| + | (cf. [[Mass and co-mass|Mass and co-mass]]) and $ | \alpha | _ {0} $ |
| + | is the mass of the $ r $-vector $ \alpha ( p) $. |
| + | In addition, the set of images of continuous functions $ \alpha $ |
| + | is dense in $ C _ {r} ^ \flat ( R) $. |
| | | |
− | Formulas (1) and (2) generalize similar results for sharp forms and sharp cochains (cf. [[Sharp form|Sharp form]]); for instance, the differential of the flat form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058075.png" />, defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058076.png" />, is also a flat form, and Stokes' theorem: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058077.png" /> is valid for any simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058078.png" />; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058079.png" />-dimensional flat cochain is the weak limit of smooth cochains, i.e. cochains for which the associated forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040580/f04058080.png" /> are smooth, etc. | + | Formulas (1) and (2) generalize similar results for sharp forms and sharp cochains (cf. [[Sharp form|Sharp form]]); for instance, the differential of the flat form $ \omega _ {X} $, |
| + | defined by the formula $ d \omega _ {X} = \omega _ {dX _ \omega } $, |
| + | is also a flat form, and Stokes' theorem: $ \int _ {\partial \sigma } \omega = \int _ \sigma d \omega $ |
| + | is valid for any simplex $ \sigma $; |
| + | an $ r $- |
| + | dimensional flat cochain is the weak limit of smooth cochains, i.e. cochains for which the associated forms $ \omega $ |
| + | are smooth, etc. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957)</TD></TR></table> |
A measurable $ r $-
dimensional differential form $ \omega $
on an open set $ R \subset E ^ {n} $
such that: 1) the co-mass (cf. Mass and co-mass) $ | \omega | _ {0} \leq N _ {1} $
for a given $ N _ {1} $;
and 2) there exists an $ N _ {2} $
with
$$
\left |\; \int\limits _ {\partial \sigma ^ {r + 1 } } \omega
\right | \leq N _ {2} | \sigma ^ {r+1} |
$$
for any simplex $ \sigma ^ {r+ 1 } $
satisfying the following condition: There exists a measurable $ Q \subset R $,
$ | R \setminus Q | _ {n} = 0 $,
such that $ \omega $
is measurable on $ \sigma ^ {r+ 1 } $
and on any one of its boundaries $ \sigma ^ {r} $,
making up $ \partial \sigma ^ {r+ 1 } $;
moreover,
$$
| \sigma ^ {r + 1 } \setminus Q | _ {r + 1 } = 0,\ \
| \sigma ^ {r} \setminus Q | _ {r} = 0.
$$
Here, $ | M | _ {s} $
denotes the $ s $-
dimensional Lebesgue measure of the intersection of the set $ M $
with some $ s $-
dimensional plane.
If $ X $
is an $ r $-dimensional flat cochain in $ R $,
there exists a bounded $ r $-dimensional form $ \omega _ {X} $
in $ R $
which is measurable in any simplex $ \sigma ^ {r} $
with respect to the plane which contains $ \sigma ^ {r} $,
and
$$ \tag{1 }
X \sigma ^ {r} = \
\int\limits _ {\sigma ^ {r} } \omega _ {X} .
$$
Also
$$
| \omega _ {X} | _ {0} = | X |,\ \
| \omega _ {dX} | _ {0} = | dX |,
$$
where $ | X | $
is the co-mass of the cochain $ X $.
Conversely, to any $ r $-
dimensional flat form $ \omega $
in $ R $
there corresponds, according to formula (1), a unique $ r $-
dimensional flat cochain $ X _ \omega $
for any simplex $ \sigma ^ {r} $
which satisfies the above condition; moreover,
$$
| X _ \omega | \leq N _ {1} ,\ \
| d X _ \omega | \leq N _ {2} .
$$
The form $ \omega $
and the cochain $ X $
are called associated. Forms associated with the same cochain are equivalent, i.e. are equal almost-everywhere in $ R $,
and comprise the flat representative.
There is a one-to-one correspondence between the $ n $-dimensional flat cochains $ X $
and the classes of equivalent bounded measurable functions $ \phi ( p) $,
given by $ \omega _ {X} = \phi ( p) dp $,
and
$$
\phi ( p) = \
\lim\limits _ {i \rightarrow \infty } \
\frac{X \sigma _ {i} }{| \sigma _ {i} | }
,
$$
where $ \sigma _ {1} , \sigma _ {2} ,\dots $
is a sequence of $ n $-
dimensional simplices contracting towards the point $ p $
such that their diameters tend to zero, but such that
$$
\frac{| \sigma _ {i} | }{( \mathop{\rm diam} \sigma _ {i} ) ^ {n} }
\geq \eta
$$
for some value of $ \eta $,
where $ | \sigma _ {i} | $
is the volume $ \sigma _ {i} $
for all $ i $.
Let $ \alpha ( p) $
be a measurable summable function in $ R $
whose values are $ r $-
vectors; it is said to correspond to an $ r $-
dimensional flat chain if
$$ \tag{2 }
\int\limits _ { R }
\omega _ {X} \cdot \alpha = X \cdot A
$$
for all $ r $-
dimensional flat cochains $ X $
($ A $
is then called a Lebesgue chain). The mapping $ \alpha \rightarrow A $
is a linear one-to-one mapping of the set of equivalence classes of functions $ \alpha ( p) $
into the space of flat chains $ C _ {r} ^ \flat ( R) $;
also, $ | A | = \int _ {R} | \alpha | _ {0} $,
where $ | A | $
is the mass of the chain $ A $,
(cf. Mass and co-mass) and $ | \alpha | _ {0} $
is the mass of the $ r $-vector $ \alpha ( p) $.
In addition, the set of images of continuous functions $ \alpha $
is dense in $ C _ {r} ^ \flat ( R) $.
Formulas (1) and (2) generalize similar results for sharp forms and sharp cochains (cf. Sharp form); for instance, the differential of the flat form $ \omega _ {X} $,
defined by the formula $ d \omega _ {X} = \omega _ {dX _ \omega } $,
is also a flat form, and Stokes' theorem: $ \int _ {\partial \sigma } \omega = \int _ \sigma d \omega $
is valid for any simplex $ \sigma $;
an $ r $-
dimensional flat cochain is the weak limit of smooth cochains, i.e. cochains for which the associated forms $ \omega $
are smooth, etc.
References
[1] | H. Whitney, "Geometric integration theory" , Princeton Univ. Press (1957) |