|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | l0591601.png |
| + | $#A+1 = 394 n = 0 |
| + | $#C+1 = 394 : ~/encyclopedia/old_files/data/L059/L.0509160 Linear differential equation in a Banach space |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| An equation of the form | | An equation of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591601.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ \tag{1 } |
| + | A _ {0} ( t) \dot{u} = A _ {1} ( t) u + g ( t) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591602.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591603.png" />, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591604.png" />, are linear operators in a [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591606.png" /> is a given function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591607.png" /> an unknown function, both with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591608.png" />; the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l0591609.png" /> is understood to be the limit of the difference quotient with respect to the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916010.png" />. | + | where $ A _ {0} ( t) $ |
| + | and $ A _ {1} ( t) $, |
| + | for every $ t $, |
| + | are linear operators in a [[Banach space|Banach space]] $ E $, |
| + | $ g ( t) $ |
| + | is a given function and $ u ( t) $ |
| + | an unknown function, both with values in $ E $; |
| + | the derivative $ \dot{u} $ |
| + | is understood to be the limit of the difference quotient with respect to the norm of $ E $. |
| | | |
| ==1. Linear differential equations with a bounded operator.== | | ==1. Linear differential equations with a bounded operator.== |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916012.png" />, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916013.png" />, are bounded operators acting in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916014.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916015.png" /> has a bounded inverse for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916016.png" />, then (1) can be solved for the derivative and takes the form | + | Suppose that $ A _ {0} ( t) $ |
| + | and $ A _ {1} ( t) $, |
| + | for every $ t $, |
| + | are bounded operators acting in $ E $. |
| + | If $ A _ {0} ( t) $ |
| + | has a bounded inverse for every $ t $, |
| + | then (1) can be solved for the derivative and takes the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
| + | \dot{u} = A ( t) u + f ( t) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916018.png" /> is a bounded operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916021.png" /> are functions with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916022.png" />. If the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916024.png" /> are continuous (or, more generally, are measurable and integrable on every finite interval), then the solution of the [[Cauchy problem|Cauchy problem]] | + | where $ A ( t) $ |
| + | is a bounded operator in $ E $, |
| + | and $ f ( t) $ |
| + | and $ u ( t) $ |
| + | are functions with values in $ E $. |
| + | If the functions $ A ( t) $ |
| + | and $ f ( t) $ |
| + | are continuous (or, more generally, are measurable and integrable on every finite interval), then the solution of the [[Cauchy problem|Cauchy problem]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | $$ \tag{3 } |
| + | \dot{u} = A ( t) u ,\ u ( s) = u _ {0} , |
| + | $$ |
| | | |
− | exists for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916026.png" /> and is given by the formula | + | exists for any $ u _ {0} \in E $ |
| + | and is given by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916027.png" /></td> </tr></table>
| + | $$ |
| + | u ( t) = U ( t , s ) u _ {0} , |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916028.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
| + | $$ \tag{4 } |
| + | U ( t , s ) = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916029.png" /></td> </tr></table>
| + | $$ |
| + | = \ |
| + | I + \int\limits _ { s } ^ { t } A ( t _ {1} ) dt _ {1} + \sum |
| + | _ {n=2} ^ \infty \int\limits _ { s } ^ { t } \int\limits _ { s } ^ { {t _ n} } \dots \int\limits _ { s } ^ { {t } _ {2} } A ( t _ {n} ) \dots A ( t _ {1} ) d t _ {1} \dots d t _ {n} $$ |
| | | |
− | is the [[Evolution operator|evolution operator]] of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916030.png" />. The solution of the Cauchy problem for equation (2) is determined by the formula | + | is the [[Evolution operator|evolution operator]] of the equation $ \dot{u} = A ( t) u $. |
| + | The solution of the Cauchy problem for equation (2) is determined by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916031.png" /></td> </tr></table>
| + | $$ |
| + | u ( t) = U ( t , s ) u _ {0} + \int\limits _ { s } ^ { t } U ( t , \tau ) f ( |
| + | \tau ) d \tau . |
| + | $$ |
| | | |
| From (4) one obtains the estimate | | From (4) one obtains the estimate |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
| + | $$ \tag{5 } |
| + | \| U ( t , s ) \| \leq \mathop{\rm exp} |
| + | \left \{ \int\limits _ { s } ^ { t } \| A ( \tau ) \| d \tau \right \} ; |
| + | $$ |
| | | |
| a refinement of it is: | | a refinement of it is: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916033.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5prm)</td></tr></table>
| + | $$ \tag{5'} |
| + | \| U ( t , s ) \| \leq \mathop{\rm exp} \left \{ \int\limits _ { s } ^ { t } r _ {A} ( \tau ) d \tau \right \} , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916034.png" /> is the [[Spectral radius|spectral radius]] of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916035.png" />. The evolution operator has the properties | + | where $ r _ {A} ( \tau ) $ |
| + | is the [[Spectral radius|spectral radius]] of the operator $ A ( \tau ) $. |
| + | The evolution operator has the properties |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916036.png" /></td> </tr></table>
| + | $$ |
| + | U ( s , s ) = I ,\ U ( t , \tau ) U ( \tau , s ) = U ( t , s), |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916037.png" /></td> </tr></table>
| + | $$ |
| + | U ( t , \tau ) = [ U ( \tau , t ) ] ^ {-} 1 . |
| + | $$ |
| | | |
− | In the study of (2) the main attention has been focused on the behaviour of its solutions at infinity, in dependence on the behaviour of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916039.png" />. An important characteristic of the equation is the general (or singular) exponent | + | In the study of (2) the main attention has been focused on the behaviour of its solutions at infinity, in dependence on the behaviour of $ A ( t) $ |
| + | and $ f ( t) $. |
| + | An important characteristic of the equation is the general (or singular) exponent |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916040.png" /></td> </tr></table>
| + | $$ |
| + | \kappa = \overline{\lim\limits}\; _ {\tau , s \rightarrow \infty } |
| + | \frac{1} \tau |
| + | \mathop{\rm ln} |
| + | \| U ( \tau + s , s ) \| . |
| + | $$ |
| | | |
| Equations with periodic and almost-periodic coefficients have been studied in detail (see [[Qualitative theory of differential equations in Banach spaces|Qualitative theory of differential equations in Banach spaces]]). | | Equations with periodic and almost-periodic coefficients have been studied in detail (see [[Qualitative theory of differential equations in Banach spaces|Qualitative theory of differential equations in Banach spaces]]). |
| | | |
− | Equation (2) can also be considered in the complex plane. If the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916042.png" /> are holomorphic in a simply-connected domain containing the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916043.png" />, then the formulas (3), (4), (5), (5prm) remain valid if the integrals are understood to be integrals over a rectifiable arc joining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916045.png" />. | + | Equation (2) can also be considered in the complex plane. If the functions $ A ( t) $ |
| + | and $ f ( t) $ |
| + | are holomorphic in a simply-connected domain containing the point $ s $, |
| + | then the formulas (3), (4), (5), (5'}) remain valid if the integrals are understood to be integrals over a rectifiable arc joining $ s $ |
| + | and $ t $. |
| | | |
− | A number of other questions arises in the case when the original linear equation is not solvable for the derivative. If the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916046.png" /> is boundedly invertible everywhere except at one point, say <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916047.png" />, then in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916048.png" /> the equation reduces to the form | + | A number of other questions arises in the case when the original linear equation is not solvable for the derivative. If the operator $ A _ {0} ( t) $ |
| + | is boundedly invertible everywhere except at one point, say $ t = 0 $, |
| + | then in the space $ E $ |
| + | the equation reduces to the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
| + | $$ \tag{6 } |
| + | a ( t) \dot{u} = A ( t) u + f ( t) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916050.png" /> is a scalar function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916051.png" />. Here the main attention is focused on the study of the behaviour of the solutions in a neighbourhood of the origin, and the analytic and non-analytic cases are distinguished. | + | where $ a ( t) $ |
| + | is a scalar function and $ a ( 0) = 0 $. |
| + | Here the main attention is focused on the study of the behaviour of the solutions in a neighbourhood of the origin, and the analytic and non-analytic cases are distinguished. |
| | | |
| ===The analytic case.=== | | ===The analytic case.=== |
| For the simplest equation | | For the simplest equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916052.png" /></td> </tr></table>
| + | $$ |
| + | t \dot{u} = A u |
| + | $$ |
| | | |
− | with a constant operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916053.png" />, the evolution operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916054.png" /> has the form | + | with a constant operator $ A $, |
| + | the evolution operator $ U ( t) = U ( t , 0 ) $ |
| + | has the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916055.png" /></td> </tr></table>
| + | $$ |
| + | U ( t) = e ^ {A \mathop{\rm ln} t } , |
| + | $$ |
| | | |
− | and the solutions are not single-valued: as one goes round the origin in the positive direction they are multiplied by the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916056.png" />. | + | and the solutions are not single-valued: as one goes round the origin in the positive direction they are multiplied by the operator $ e ^ {2 \pi i A } $. |
| | | |
| Consider an equation with a regular singularity | | Consider an equation with a regular singularity |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916057.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
| + | $$ \tag{7 } |
| + | t \dot{u} = \left ( \sum _ { k=0} ^ \infty A ^ {(} k) t ^ {k} \right ) u , |
| + | $$ |
| | | |
− | where the series on the right-hand side converges in a neighbourhood of the origin. If one looks for the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916058.png" /> in the form of a series | + | where the series on the right-hand side converges in a neighbourhood of the origin. If one looks for the operator $ U ( t) $ |
| + | in the form of a series |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916059.png" /></td> </tr></table>
| + | $$ |
| + | U ( t) = \left ( \sum _ { k=0} ^ \infty U ^ {(} k) t ^ {k} \right ) e ^ {A ^ {(0)} \mathop{\rm ln} t } , |
| + | $$ |
| | | |
− | then for the determination of the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916060.png" /> one obtains the system of equations | + | then for the determination of the coefficients $ U ^ {(k)} $ |
| + | one obtains the system of equations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916061.png" /></td> </tr></table>
| + | $$ |
| + | A ^ {(0)} U ^ {(} 0) - U ^ {(0)} A ^ {(0)} = 0 , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916062.png" /></td> </tr></table>
| + | $$ |
| + | ( A ^ {(} 0) - kI ) U ^ {(} k) - U ^ {(} k) A ^ {(0)} = - \sum _{j=1} ^ { k } A ^ {(} j) u ^ {( k- j ) } ,\ k = 1 , 2 , . . . . |
| + | $$ |
| | | |
− | For this system to be solvable, that is, for (7) to be formally solvable, it is sufficient that the spectra of the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916064.png" /> do not intersect (cf. [[Spectrum of an operator|Spectrum of an operator]]), or, equivalently, that there are no points differing by an integer in the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916065.png" />. Under this condition the series | + | For this system to be solvable, that is, for (7) to be formally solvable, it is sufficient that the spectra of the operators $ A ^ {(} 0) $ |
| + | and $ A ^ {(} 0) - kI $ |
| + | do not intersect (cf. [[Spectrum of an operator|Spectrum of an operator]]), or, equivalently, that there are no points differing by an integer in the spectrum of $ A ^ {(0)} $. |
| + | Under this condition the series |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916066.png" /></td> </tr></table>
| + | $$ |
| + | \sum _{k=0} ^ \infty U ^ {(k)} {t ^ {k} } |
| + | $$ |
| | | |
− | converges in the same neighbourhood of zero as the series for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916067.png" />. Now, if there are finitely many integers representable as differences of points of the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916068.png" />, and each of them is an isolated point of the spectrum of the transformer | + | converges in the same neighbourhood of zero as the series for $ A ( t) $. |
| + | Now, if there are finitely many integers representable as differences of points of the spectrum of $ A ^ {(} 0) $, |
| + | and each of them is an isolated point of the spectrum of the transformer |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916069.png" /></td> </tr></table>
| + | $$ |
| + | \mathfrak A X = A ^ {(} 0) X - X A ^ {(} 0) , |
| + | $$ |
| | | |
| then there is a solution of the form | | then there is a solution of the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916070.png" /></td> </tr></table>
| + | $$ |
| + | U ( t) = \left ( I + \sum _ {k=1} ^ \infty U _ {k} ( \mathop{\rm ln} t ) t |
| + | ^ {k} \right ) e ^ {A ^ {(0)} \mathop{\rm ln} t } ,\ 0 < | t | < \rho , |
| + | $$ |
| | | |
− | where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916071.png" /> are entire functions of the argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916072.png" />, satisfying for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916073.png" /> the condition | + | where the $ U _ {k} $ |
| + | are entire functions of the argument $ \mathop{\rm ln} t $, |
| + | satisfying for every $ \epsilon > 0 $ |
| + | the condition |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916074.png" /></td> </tr></table>
| + | $$ |
| + | \| U _ {k} ( \mathop{\rm ln} t ) \| \leq C _ \epsilon e ^ {\epsilon |
| + | | \mathop{\rm ln} t | } . |
| + | $$ |
| | | |
− | If the integer points of the spectrum of the transformer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916075.png" /> are poles of its resolvent, then the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916076.png" /> are polynomials. | + | If the integer points of the spectrum of the transformer $ \mathfrak A $ |
| + | are poles of its resolvent, then the functions $ U _ {k} $ |
| + | are polynomials. |
| | | |
| In the case of an irregular singularity, the differential equation | | In the case of an irregular singularity, the differential equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916077.png" /></td> </tr></table>
| + | $$ |
| + | t ^ {m} \dot{u} = \left ( \sum _ { k=0} ^ { m-1} A ^ {(k)} t ^ {k} \right ) u |
| + | $$ |
| | | |
− | has been considered in a Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916078.png" /> (for example, in the algebra of bounded operators on a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916079.png" />). Under certain restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916080.png" /> it reduces by means of Laplace integrals to an equation with a regular singularity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916081.png" /> in the algebra of matrices with entries from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916082.png" />. | + | has been considered in a Banach algebra $ \mathfrak B $( |
| + | for example, in the algebra of bounded operators on a Banach space $ E $). |
| + | Under certain restrictions on $ A ^ {(} 0) $ |
| + | it reduces by means of Laplace integrals to an equation with a regular singularity $ ( m = 1 ) $ |
| + | in the algebra of matrices with entries from $ \mathfrak B $. |
| | | |
| ===The non-analytic case.=== | | ===The non-analytic case.=== |
| Suppose that in the equation | | Suppose that in the equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916083.png" /></td> </tr></table>
| + | $$ |
| + | t ^ {n} \dot{u} = A ( t) u + f ( t) ,\ 0 \leq t \leq T , |
| + | $$ |
| | | |
− | the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916084.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916085.png" /> are infinitely differentiable. In the finite-dimensional case a complete result has been obtained: If the equation has a formal solution in the form of a power series, then it has a solution that is infinitely differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916086.png" /> for which the formal series is the Taylor series at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916087.png" />. In the infinite-dimensional case there is only a number of sufficient conditions for the existence of infinitely-differentiable solutions. | + | the functions $ A ( t) $ |
| + | and $ f ( t) $ |
| + | are infinitely differentiable. In the finite-dimensional case a complete result has been obtained: If the equation has a formal solution in the form of a power series, then it has a solution that is infinitely differentiable on $ [ 0 , T ] $ |
| + | for which the formal series is the Taylor series at the point $ t = 0 $. |
| + | In the infinite-dimensional case there is only a number of sufficient conditions for the existence of infinitely-differentiable solutions. |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916088.png" />. If the spectrum of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916089.png" /> does not intersect the imaginary axis, then there is a family of infinitely-differentiable solutions that depends on an arbitrary element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916090.png" /> belonging to the invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916091.png" /> corresponding to the part of the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916092.png" /> lying in the left half-plane. Any solution that is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916093.png" /> appears in this family. If the whole spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916094.png" /> lies in the left half-plane, then there is only one infinitely-differentiable solution. | + | Suppose that $ m > 1 $. |
| + | If the spectrum of the operator $ A ( 0) $ |
| + | does not intersect the imaginary axis, then there is a family of infinitely-differentiable solutions that depends on an arbitrary element $ g ^ {-} $ |
| + | belonging to the invariant subspace of $ A ( 0) $ |
| + | corresponding to the part of the spectrum of $ A ( 0) $ |
| + | lying in the left half-plane. Any solution that is continuous on $ [ 0 , T] $ |
| + | appears in this family. If the whole spectrum of $ A ( 0) $ |
| + | lies in the left half-plane, then there is only one infinitely-differentiable solution. |
| | | |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916095.png" />. If there are no negative integers in the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916096.png" />, then there is a unique infinitely-differentiable solution. Under similar assumptions about the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916097.png" />, equations of the form (6) have been considered in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916098.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l05916099.png" /> have finite smoothness, and the solutions have the same smoothness. | + | Suppose that $ m = 1 $. |
| + | If there are no negative integers in the spectrum of $ A ( 0) $, |
| + | then there is a unique infinitely-differentiable solution. Under similar assumptions about the operator $ A ( 0) $, |
| + | equations of the form (6) have been considered in which $ a ( t) $ |
| + | and $ f ( t) $ |
| + | have finite smoothness, and the solutions have the same smoothness. |
| | | |
− | A rather different picture emerges when the differential equation is unsolvable for the derivative for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160100.png" />, for example when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160101.png" /> is a constant non-invertible operator. Suppose that in the equation | + | A rather different picture emerges when the differential equation is unsolvable for the derivative for all $ t $, |
| + | for example when $ A $ |
| + | is a constant non-invertible operator. Suppose that in the equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160102.png" /></td> <td valign="top" style="width:5%;text-align:right;">(8)</td></tr></table>
| + | $$ \tag{8 } |
| + | A \dot{u} = B u |
| + | $$ |
| | | |
− | the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160104.png" /> are bounded in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160105.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160106.png" /> is a non-invertible [[Fredholm-operator(2)|Fredholm operator]]. Suppose that the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160107.png" /> is continuously invertible for sufficiently small <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160108.png" />. Then there are decompositions into direct sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160110.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160111.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160112.png" /> map <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160113.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160114.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160115.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160116.png" />. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160117.png" /> is invertible on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160118.png" /> and maps onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160119.png" />. The subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160120.png" /> is finite-dimensional. All solutions of (8) lie in the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160121.png" /> and have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160122.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160123.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160124.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160125.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160126.png" />. For an inhomogeneous equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160127.png" />, a solution exists only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160128.png" /> has a certain smoothness and under certain compatibility conditions for the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160129.png" /> and its derivatives with the initial data. The number of derivatives that certain components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160130.png" /> must have and the number of compatibility conditions are equal to the maximal length of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160131.png" />-adjoint chains of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160132.png" />. If these conditions are satisfied, the solution of the Cauchy problem is unique. | + | the operators $ A $ |
| + | and $ B $ |
| + | are bounded in the space $ E $ |
| + | and $ A $ |
| + | is a non-invertible [[Fredholm-operator(2)|Fredholm operator]]. Suppose that the operator $ A + \epsilon B $ |
| + | is continuously invertible for sufficiently small $ \epsilon $. |
| + | Then there are decompositions into direct sums $ E= N ^ {(} 1) + M ^ {(} 1) $ |
| + | and $ E = N ^ {(} 2) + M ^ {(} 2) $ |
| + | such that $ A $ |
| + | and $ B $ |
| + | map $ N ^ {(} 1) $ |
| + | into $ N ^ {(} 2) $ |
| + | and $ M ^ {(} 1) $ |
| + | into $ M ^ {(} 2) $. |
| + | The operator $ A $ |
| + | is invertible on $ M ^ {(} 1) $ |
| + | and maps onto $ M ^ {(} 2) $. |
| + | The subspace $ N ^ {(} 1) $ |
| + | is finite-dimensional. All solutions of (8) lie in the subspace $ M ^ {(} 1) $ |
| + | and have the form $ \mathop{\rm exp} ( \widetilde{A} {} ^ {-} 1 Bt ) u _ {0} $, |
| + | where $ \widetilde{A} $ |
| + | is the restriction of $ A $ |
| + | to $ M ^ {(} 1) $ |
| + | and $ u _ {0} \in M ^ {(} 1) $. |
| + | For an inhomogeneous equation $ A \dot{u} = Bu + f ( t) $, |
| + | a solution exists only if $ f ( t) $ |
| + | has a certain smoothness and under certain compatibility conditions for the values of $ f( t) $ |
| + | and its derivatives with the initial data. The number of derivatives that certain components of $ f ( t) $ |
| + | must have and the number of compatibility conditions are equal to the maximal length of $ B $- |
| + | adjoint chains of the operator $ A $. |
| + | If these conditions are satisfied, the solution of the Cauchy problem is unique. |
| | | |
− | If the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160133.png" /> is non-invertible for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160134.png" />, then all solutions of (8) lie in a subspace that has, generally speaking, infinite deficiency (cf. also [[Deficiency subspace|Deficiency subspace]]). The solution of the Cauchy problem for it is not unique. For the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160135.png" /> in the inhomogeneous equation infinitely many differentiability conditions and compatibility conditions are required. | + | If the operator $ A + \epsilon B $ |
| + | is non-invertible for all $ \epsilon $, |
| + | then all solutions of (8) lie in a subspace that has, generally speaking, infinite deficiency (cf. also [[Deficiency subspace|Deficiency subspace]]). The solution of the Cauchy problem for it is not unique. For the function $ f( t) $ |
| + | in the inhomogeneous equation infinitely many differentiability conditions and compatibility conditions are required. |
| | | |
| ==2. Linear differential equations with an unbounded operator.== | | ==2. Linear differential equations with an unbounded operator.== |
− | Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160136.png" /> is invertible for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160137.png" />, so that (1) can be solved for the derivative and takes the form | + | Suppose that $ A _ {0} ( t) $ |
| + | is invertible for every $ t $, |
| + | so that (1) can be solved for the derivative and takes the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160138.png" /></td> <td valign="top" style="width:5%;text-align:right;">(9)</td></tr></table>
| + | $$ \tag{9 } |
| + | \dot{u} = A ( t) u + f ( t) , |
| + | $$ |
| | | |
− | and suppose that here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160139.png" /> is an unbounded operator in a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160140.png" />, with dense domain of definition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160141.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160142.png" /> and with non-empty [[Resolvent set|resolvent set]], and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160143.png" /> is a given function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160144.png" /> an unknown function, both with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160145.png" />. | + | and suppose that here $ A ( t) $ |
| + | is an unbounded operator in a space $ E $, |
| + | with dense domain of definition $ D ( A ( t) ) $ |
| + | in $ E $ |
| + | and with non-empty [[Resolvent set|resolvent set]], and suppose that $ f ( t) $ |
| + | is a given function and $ u ( t) $ |
| + | an unknown function, both with values in $ E $. |
| | | |
− | Even for the simplest equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160146.png" /> with an unbounded operator, solutions of the Cauchy problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160147.png" /> need not exist, they may be non-unique, and they may be non-extendable to the whole semi-axis, so the main investigations are devoted to the questions of existence and uniqueness of the solutions. A solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160148.png" /> on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160149.png" /> is understood to be a function that takes values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160150.png" />, is differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160151.png" /> and satisfies the equation. Sometimes this definition is too rigid and one introduces the concept of a weak solution as a function that has the same properties on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160152.png" /> and is only continuous at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160153.png" />. | + | Even for the simplest equation $ \dot{u} = Au $ |
| + | with an unbounded operator, solutions of the Cauchy problem $ u ( 0) = u _ {0} $ |
| + | need not exist, they may be non-unique, and they may be non-extendable to the whole semi-axis, so the main investigations are devoted to the questions of existence and uniqueness of the solutions. A solution of the equation $ \dot{u} = Au $ |
| + | on the interval $ [ 0, T ] $ |
| + | is understood to be a function that takes values in $ D ( A) $, |
| + | is differentiable on $ [ 0, T ] $ |
| + | and satisfies the equation. Sometimes this definition is too rigid and one introduces the concept of a weak solution as a function that has the same properties on $ ( 0 , T ] $ |
| + | and is only continuous at $ 0 $. |
| | | |
− | Suppose that the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160154.png" /> has a resolvent | + | Suppose that the operator $ A $ |
| + | has a resolvent |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160155.png" /></td> </tr></table>
| + | $$ |
| + | R ( \lambda , A ) = ( A - \lambda I ) ^ {-} 1 |
| + | $$ |
| | | |
− | for all sufficiently large positive <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160156.png" /> and that | + | for all sufficiently large positive $ \lambda $ |
| + | and that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160157.png" /></td> </tr></table>
| + | $$ |
| + | \overline{\lim\limits}\; _ {\lambda \rightarrow \infty } \lambda ^ {-} 1 \mathop{\rm ln} \| R |
| + | ( \lambda , A ) \| = h < T . |
| + | $$ |
| | | |
| Then the weak solution of the problem | | Then the weak solution of the problem |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160158.png" /></td> <td valign="top" style="width:5%;text-align:right;">(10)</td></tr></table>
| + | $$ \tag{10 } |
| + | \dot{u} = Au ,\ u ( 0) = u _ {0} $$ |
| | | |
− | is unique on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160159.png" /> and can be branched for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160160.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160161.png" />, then the solution is unique on the whole semi-axis. This assertion is precise as regards the behaviour of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160162.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160163.png" />. | + | is unique on $ [ 0 , T - h ] $ |
| + | and can be branched for $ t = T - h $. |
| + | If $ h = 0 $, |
| + | then the solution is unique on the whole semi-axis. This assertion is precise as regards the behaviour of $ R ( \lambda , A ) $ |
| + | as $ \lambda \rightarrow \infty $. |
| | | |
− | If for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160164.png" /> there is a unique solution of the problem (10) that is continuously differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160165.png" />, then this solution can be extended to the whole semi-axis and can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160166.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160167.png" /> is a [[Strongly-continuous semi-group|strongly-continuous semi-group]] of bounded operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160168.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160169.png" />, for which the estimate <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160170.png" /> holds. For the equation to have this property it is necessary and sufficient that | + | If for every $ u _ {0} \in D ( A) $ |
| + | there is a unique solution of the problem (10) that is continuously differentiable on $ [ 0 , T ] $, |
| + | then this solution can be extended to the whole semi-axis and can be represented in the form $ u ( t) = U ( t) u _ {0} $, |
| + | where $ U ( t) $ |
| + | is a [[Strongly-continuous semi-group|strongly-continuous semi-group]] of bounded operators on $ [ 0 , \infty ) $, |
| + | $ U ( 0) = I $, |
| + | for which the estimate $ \| U ( t) \| \leq M e ^ {\omega t } $ |
| + | holds. For the equation to have this property it is necessary and sufficient that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160171.png" /></td> <td valign="top" style="width:5%;text-align:right;">(11)</td></tr></table>
| + | $$ \tag{11 } |
| + | \| ( \lambda - \omega ) ^ {m} R ^ {m} ( \lambda , A ) \| \leq M |
| + | $$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160172.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160173.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160174.png" /> does not depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160175.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160176.png" />. These conditions are difficult to verify. They are satisfied if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160177.png" />, and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160178.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160179.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160180.png" /> is a [[Contraction semi-group|contraction semi-group]]. This is so if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160181.png" /> is a maximal [[Dissipative operator|dissipative operator]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160182.png" />, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160183.png" /> is not differentiable (in any case for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160184.png" />); it is often called the generalized solution of (10). Solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160185.png" /> can be constructed as the limit, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160186.png" />, of solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160187.png" /> with bounded operators, under the same initial conditions. For this it is sufficient that the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160188.png" /> commute, converge strongly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160189.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160190.png" /> and that | + | for all $ \lambda > \omega $ |
| + | and $ m = 1 , 2 \dots $ |
| + | where $ M $ |
| + | does not depend on $ \lambda $ |
| + | and $ m $. |
| + | These conditions are difficult to verify. They are satisfied if $ \| ( \lambda - \omega ) R ( \lambda , A ) \| \leq 1 $, |
| + | and then $ \| U ( t) \| \leq e ^ {\omega t } $. |
| + | If $ \omega = 0 $, |
| + | then $ U ( t) $ |
| + | is a [[Contraction semi-group|contraction semi-group]]. This is so if and only if $ A $ |
| + | is a maximal [[Dissipative operator|dissipative operator]]. If $ u _ {0} \notin D ( A) $, |
| + | then the function $ U ( t) u _ {0} $ |
| + | is not differentiable (in any case for $ t = 0 $); |
| + | it is often called the generalized solution of (10). Solutions of the equation $ \dot{u} = Au $ |
| + | can be constructed as the limit, as $ n \rightarrow \infty $, |
| + | of solutions of the equation $ \dot{u} = A _ {n} u $ |
| + | with bounded operators, under the same initial conditions. For this it is sufficient that the operators $ A _ {n} $ |
| + | commute, converge strongly to $ A $ |
| + | on $ D ( A) $ |
| + | and that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160191.png" /></td> </tr></table>
| + | $$ |
| + | \| e ^ {t A _ {n} } \| \leq M e ^ {\omega t } . |
| + | $$ |
| | | |
− | If the conditions (11) are satisfied, then the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160192.png" /> (Yosida operators) have these properties. | + | If the conditions (11) are satisfied, then the operators $ A _ {n} = - nI - n ^ {2} R ( \lambda , A ) $( |
| + | Yosida operators) have these properties. |
| | | |
− | Another method for constructing solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160193.png" /> is based on Laplace transformation. If the resolvent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160194.png" /> is defined on some contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160195.png" />, then the function | + | Another method for constructing solutions of the equation $ \dot{u} = A u $ |
| + | is based on Laplace transformation. If the resolvent of $ A $ |
| + | is defined on some contour $ \Gamma $, |
| + | then the function |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160196.png" /></td> <td valign="top" style="width:5%;text-align:right;">(12)</td></tr></table>
| + | $$ \tag{12 } |
| + | u ( t) = - |
| + | \frac{1}{2 \pi i } |
| + | \int\limits _ \Gamma e ^ {\lambda t } R ( |
| + | \lambda , A ) u _ {0} d \lambda |
| + | $$ |
| | | |
| formally satisfies the equation | | formally satisfies the equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160197.png" /></td> </tr></table>
| + | $$ |
| + | \dot{u} = A u + |
| + | \frac{1}{2 \pi i } |
| + | \int\limits _ \Gamma e ^ {\lambda t } \ |
| + | d \lambda u _ {0} . |
| + | $$ |
| | | |
− | If the convergence of the integrals, the validity of differentiation under the integral sign and the vanishing of the last integral are ensured, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160198.png" /> satisfies the equation. The difficulty lies in the fact that the norm of the resolvent cannot decrease faster than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160199.png" /> at infinity. However, on some elements it does decrease faster. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160200.png" /> is defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160201.png" /> and if | + | If the convergence of the integrals, the validity of differentiation under the integral sign and the vanishing of the last integral are ensured, then $ u ( t) $ |
| + | satisfies the equation. The difficulty lies in the fact that the norm of the resolvent cannot decrease faster than $ | \lambda | ^ {-} 1 $ |
| + | at infinity. However, on some elements it does decrease faster. For example, if $ R ( \lambda , A ) $ |
| + | is defined for $ \mathop{\rm Re} \lambda \geq \alpha $ |
| + | and if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160202.png" /></td> </tr></table>
| + | $$ |
| + | \| R ( \lambda , A ) \| \leq M | \lambda | ^ {k} ,\ k \geq - 1 , |
| + | $$ |
| | | |
− | for sufficiently large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160203.png" />, then for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160204.png" /> formula (12) gives a solution for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160205.png" />. In a "less good" case, when the previous inequality is satisfied only in the domain | + | for sufficiently large $ | \lambda | $, |
| + | then for $ \Gamma = ( - i \infty , i \infty ) $ |
| + | formula (12) gives a solution for any $ u _ {0} \in D ( A ^ {[ k ] + 3 } ) $. |
| + | In a "less good" case, when the previous inequality is satisfied only in the domain |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160206.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm Re} \lambda \geq \alpha | \mathop{\rm Im} \lambda | ^ {a} ,\ 0 |
| + | < a < 1 |
| + | $$ |
| | | |
− | (weakly hyperbolic equations), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160207.png" /> is the boundary of this domain, one obtains a solution only for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160208.png" /> belonging to the intersection of the domains of definition of all powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160209.png" />, with definite behaviour of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160210.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160211.png" />. | + | (weakly hyperbolic equations), and $ \Gamma $ |
| + | is the boundary of this domain, one obtains a solution only for an $ u _ {0} $ |
| + | belonging to the intersection of the domains of definition of all powers of $ A $, |
| + | with definite behaviour of $ \| A ^ {n} u _ {0} \| $ |
| + | as $ n \rightarrow \infty $. |
| | | |
− | Significantly weaker solutions are obtained in the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160212.png" /> goes into the left half-plane, and one can use the decrease of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160213.png" /> on it. As a rule, the solutions have increased smoothness for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160214.png" />. If the resolvent is bounded on the contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160215.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160216.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160217.png" /> is a smooth non-decreasing concave function that increases like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160218.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160219.png" />, then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160220.png" /> the function (12) is differentiable and satisfies the equation, beginning with some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160221.png" />; as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160222.png" /> increases further, its smoothness increases. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160223.png" /> increases like a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160224.png" /> with exponent less than one, then the function (12) is infinitely differentiable for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160225.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160226.png" /> increases like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160227.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160228.png" /> belongs to a [[Quasi-analytic class|quasi-analytic class]] of functions; if it increases like a linear function, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160229.png" /> is analytic. In all these cases it satisfies the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160230.png" />. | + | Significantly weaker solutions are obtained in the case when $ \Gamma $ |
| + | goes into the left half-plane, and one can use the decrease of the function $ | e ^ {\lambda t } | $ |
| + | on it. As a rule, the solutions have increased smoothness for $ t > 0 $. |
| + | If the resolvent is bounded on the contour $ \Gamma $: |
| + | $ \mathop{\rm Re} \lambda = - \psi ( | \mathop{\rm Im} \lambda | ) $, |
| + | where $ \psi ( \tau ) $ |
| + | is a smooth non-decreasing concave function that increases like $ \mathop{\rm ln} \tau $ |
| + | at $ \infty $, |
| + | then for any $ u _ {0} \in E $ |
| + | the function (12) is differentiable and satisfies the equation, beginning with some $ t _ {0} $; |
| + | as $ t $ |
| + | increases further, its smoothness increases. If $ \psi ( \tau ) $ |
| + | increases like a power of $ \tau $ |
| + | with exponent less than one, then the function (12) is infinitely differentiable for $ t > 0 $; |
| + | if $ \psi ( \tau ) $ |
| + | increases like $ \tau / \mathop{\rm ln} \tau $, |
| + | then $ u ( t) $ |
| + | belongs to a [[Quasi-analytic class|quasi-analytic class]] of functions; if it increases like a linear function, then $ u ( t) $ |
| + | is analytic. In all these cases it satisfies the equation $ \dot{u} = A u $. |
| | | |
− | The existence of the resolvent on contours that go into the left half-plane may be obtained, by using series expansion, from the corresponding estimates on vertical lines. If for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160231.png" />, | + | The existence of the resolvent on contours that go into the left half-plane may be obtained, by using series expansion, from the corresponding estimates on vertical lines. If for $ \mathop{\rm Re} \lambda \geq \gamma $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160232.png" /></td> <td valign="top" style="width:5%;text-align:right;">(13)</td></tr></table>
| + | $$ \tag{13 } |
| + | \| R ( \lambda , A ) \| \leq M ( 1 + | \mathop{\rm Im} \lambda | ) ^ |
| + | {- \beta } ,\ 0 < \beta < 1 , |
| + | $$ |
| | | |
− | then for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160233.png" /> there is a solution of problem (10). All these solutions are infinitely differentiable for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160234.png" />. They can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160235.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160236.png" /> is an infinitely-differentiable semi-group for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160237.png" /> having, generally speaking, a singularity at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160238.png" />. For its derivatives one has the estimates | + | then for every $ u _ {0} \in D ( A) $ |
| + | there is a solution of problem (10). All these solutions are infinitely differentiable for $ t > 0 $. |
| + | They can be represented in the form $ u ( t) = U ( t) u _ {0} $, |
| + | where $ U ( t) $ |
| + | is an infinitely-differentiable semi-group for $ t > 0 $ |
| + | having, generally speaking, a singularity at $ t = 0 $. |
| + | For its derivatives one has the estimates |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160239.png" /></td> </tr></table>
| + | $$ |
| + | \| U ( k) ( t) \| \leq M _ {k} t ^ {1 - ( k+ 1 ) / \beta } e ^ { |
| + | \omega t } . |
| + | $$ |
| | | |
− | If the estimate (13) is satisfied for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160240.png" />, then all generalized solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160241.png" /> are analytic in some sector containing the positive semi-axis. | + | If the estimate (13) is satisfied for $ \beta = 1 $, |
| + | then all generalized solutions of the equation $ \dot{u} = Au $ |
| + | are analytic in some sector containing the positive semi-axis. |
| | | |
− | The equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160242.png" /> is called an abstract parabolic equation if there is a unique weak solution on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160243.png" /> satisfying the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160244.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160245.png" />. If | + | The equation $ \dot{u} = Au $ |
| + | is called an abstract parabolic equation if there is a unique weak solution on $ [ 0 , \infty ] $ |
| + | satisfying the initial condition $ u ( 0) = u _ {0} $ |
| + | for any $ u _ {0} \in E $. |
| + | If |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160246.png" /></td> <td valign="top" style="width:5%;text-align:right;">(14)</td></tr></table>
| + | $$ \tag{14 } |
| + | \| R ( \lambda , A ) \| \leq M | \lambda - \omega | ^ {-} 1 \ \ |
| + | \textrm{ for } \mathop{\rm Re} \lambda > \omega , |
| + | $$ |
| | | |
| then the equation is an abstract parabolic equation. All its generalized solutions are analytic in some sector containing the positive semi-axis, and | | then the equation is an abstract parabolic equation. All its generalized solutions are analytic in some sector containing the positive semi-axis, and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160247.png" /></td> </tr></table>
| + | $$ |
| + | \| \dot{u} ( t) \| \leq t ^ {-} 1 C e ^ {\omega t } \| u _ {0} \| , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160248.png" /> does not depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160249.png" />. Conversely, if the equation has the listed properties, then (14) is satisfied for the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160250.png" />. | + | where $ C $ |
| + | does not depend on $ u _ {0} $. |
| + | Conversely, if the equation has the listed properties, then (14) is satisfied for the operator $ A $. |
| | | |
− | If problem (10) has a unique weak solution for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160251.png" /> for which the derivative is integrable on every finite interval, then these solutions can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160252.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160253.png" /> is a strongly-continuous semi-group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160254.png" />, and every weak solution of the inhomogeneous equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160255.png" /> with initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160256.png" /> can be represented in the form | + | If problem (10) has a unique weak solution for any $ u _ {0} \in D ( A) $ |
| + | for which the derivative is integrable on every finite interval, then these solutions can be represented in the form $ u ( t) = U ( t) u _ {0} $, |
| + | where $ U ( t) $ |
| + | is a strongly-continuous semi-group on $ ( 0 , \infty ) $, |
| + | and every weak solution of the inhomogeneous equation $ \dot{v} = Av + f ( t) $ |
| + | with initial condition $ v ( 0) = 0 $ |
| + | can be represented in the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160257.png" /></td> <td valign="top" style="width:5%;text-align:right;">(15)</td></tr></table>
| + | $$ \tag{15 } |
| + | v ( t) = \int\limits _ { 0 } ^ { t } U ( t- s ) f ( s) ds . |
| + | $$ |
| | | |
− | The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160258.png" /> is defined for any continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160259.png" />, hence it is called a generalized solution of the inhomogeneous equation. To ensure that it is differentiable, one imposes smoothness conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160260.png" />, and the "worse" the semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160261.png" />, the "higher" these should be. Thus, under the previous conditions, (15) is a weak solution of the inhomogeneous equation if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160262.png" /> is twice continuously differentiable; if (11) is satisfied, then (15) is a solution if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160263.png" /> is continuously differentiable; if (13) is satisfied with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160264.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160265.png" /> is a weak solution if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160266.png" /> satisfies a Hölder condition with exponent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160267.png" />. Instead of smoothness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160268.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160269.png" /> one can require that the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160270.png" /> belong to the domain of definition of the corresponding power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160271.png" />. | + | The function $ v ( t) $ |
| + | is defined for any continuous $ f ( t) $, |
| + | hence it is called a generalized solution of the inhomogeneous equation. To ensure that it is differentiable, one imposes smoothness conditions on $ f ( t) $, |
| + | and the "worse" the semi-group $ U ( t) $, |
| + | the "higher" these should be. Thus, under the previous conditions, (15) is a weak solution of the inhomogeneous equation if $ f ( t) $ |
| + | is twice continuously differentiable; if (11) is satisfied, then (15) is a solution if $ f ( t) $ |
| + | is continuously differentiable; if (13) is satisfied with $ \beta > 2/3 $, |
| + | then $ v ( t) $ |
| + | is a weak solution if $ f ( t) $ |
| + | satisfies a Hölder condition with exponent $ \gamma > 2 ( 1 - 1/ \beta ) $. |
| + | Instead of smoothness of $ f ( t) $ |
| + | with respect to $ t $ |
| + | one can require that the values of $ f ( t) $ |
| + | belong to the domain of definition of the corresponding power of $ A $. |
| | | |
| For an equation with variable operator | | For an equation with variable operator |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160272.png" /></td> <td valign="top" style="width:5%;text-align:right;">(16)</td></tr></table>
| + | $$ \tag{16 } |
| + | \dot{u} = A ( t) u ,\ \ |
| + | 0 \leq t \leq T , |
| + | $$ |
| + | |
| + | there are some fundamental existence and uniqueness theorems about solutions (weak solutions) of the Cauchy problem $ u ( s) = u _ {0} $ |
| + | on the interval $ s \leq t \leq T $. |
| + | If the domain of definition of $ A ( t) $ |
| + | does not depend on $ t $, |
| + | |
| + | $$ |
| + | D ( A ( t) ) \equiv D ( A), |
| + | $$ |
| | | |
− | there are some fundamental existence and uniqueness theorems about solutions (weak solutions) of the Cauchy problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160273.png" /> on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160274.png" />. If the domain of definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160275.png" /> does not depend on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160276.png" />,
| + | if the operator $ A ( t) $ |
| + | is strongly continuous with respect to $ t $ |
| + | on $ D ( A) $ |
| + | and if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160277.png" /></td> </tr></table>
| + | $$ |
| + | \| \lambda R ( \lambda , A ( t) ) \| \leq 1 |
| + | $$ |
| | | |
− | if the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160278.png" /> is strongly continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160279.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160280.png" /> and if
| + | for $ \lambda > 0 $, |
| + | then the solution of the Cauchy problem is unique. Moreover, if $ A ( t) $ |
| + | is strongly continuously differentiable on $ D ( A) $, |
| + | then for every $ u _ {0} \in D ( A) $ |
| + | a solution exists and can be represented in the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160281.png" /></td> </tr></table>
| + | $$ |
| + | u ( t) = U ( t , s ) u _ {0} , |
| + | $$ |
| | | |
− | for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160282.png" />, then the solution of the Cauchy problem is unique. Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160283.png" /> is strongly continuously differentiable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160284.png" />, then for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160285.png" /> a solution exists and can be represented in the form
| + | where $ U ( t , s ) $ |
| + | is an [[Evolution operator|evolution operator]] with the following properties: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160286.png" /></td> </tr></table>
| + | 1) $ U ( t , s ) $ |
| + | is strongly continuous in the triangle $ T _ \Delta $: |
| + | $ 0 \leq s \leq t \leq T $; |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160287.png" /> is an [[Evolution operator|evolution operator]] with the following properties:
| + | 2) $ U ( t , s ) = U ( t , \tau ) U ( \tau , s ) $, |
| + | $ 0 \leq s \leq \tau \leq t \leq T $, |
| + | $ U ( s , s ) = I $; |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160288.png" /> is strongly continuous in the triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160289.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160290.png" />;
| + | 3) $ U ( t , s ) $ |
| + | maps $ D ( A) $ |
| + | into itself and the operator |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160291.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160292.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160293.png" />;
| + | $$ |
| + | A ( t) U ( t , s ) A ^ {-} 1 ( s) |
| + | $$ |
| | | |
− | 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160294.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160295.png" /> into itself and the operator
| + | is bounded and strongly continuous in $ T _ \Delta $; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160296.png" /></td> </tr></table>
| + | 4) on $ D ( A) $ |
| + | the operator $ U ( t , s ) $ |
| + | is strongly differentiable with respect to $ t $ |
| + | and $ s $ |
| + | and |
| | | |
− | is bounded and strongly continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160297.png" />;
| + | $$ |
| | | |
− | 4) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160298.png" /> the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160299.png" /> is strongly differentiable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160300.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160301.png" /> and
| + | \frac{\partial U }{\partial t } |
| + | = A ( t) U ,\ \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160302.png" /></td> </tr></table>
| + | \frac{\partial U }{\partial s } |
| + | = - U A ( s) . |
| + | $$ |
| | | |
− | The construction of the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160303.png" /> is carried out by approximating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160304.png" /> by bounded operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160305.png" /> and replacing the latter by piecewise-constant operators. | + | The construction of the operator $ U ( t , s ) $ |
| + | is carried out by approximating $ A ( t) $ |
| + | by bounded operators $ A _ {n} ( t) $ |
| + | and replacing the latter by piecewise-constant operators. |
| | | |
− | In many important problems the previous conditions on the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160306.png" /> are not satisfied. Suppose that for the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160307.png" /> there are constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160308.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160309.png" /> such that | + | In many important problems the previous conditions on the operator $ A ( t) $ |
| + | are not satisfied. Suppose that for the operator $ A ( t) $ |
| + | there are constants $ M $ |
| + | and $ \omega $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160310.png" /></td> </tr></table>
| + | $$ |
| + | \| R ( \lambda , A ( t _ {k} ) ) \dots R ( \lambda , A ( t _ {1} ) ) \| |
| + | \leq M ( \lambda - \omega ) ^ {-} k |
| + | $$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160311.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160312.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160313.png" />. Suppose that in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160314.png" /> there is densely imbedded a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160315.png" /> contained in all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160316.png" /> and having the following properties: a) the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160317.png" /> acts boundedly from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160318.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160319.png" /> and is continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160320.png" /> in the norm as a bounded operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160321.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160322.png" />; and b) there is an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160323.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160324.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160325.png" /> such that | + | for all $ \lambda > \omega $, |
| + | $ 0 \leq t _ {1} \leq \dots \leq t _ {k} \leq T $, |
| + | $ k = 1 , 2, . . . $. |
| + | Suppose that in $ E $ |
| + | there is densely imbedded a Banach space $ F $ |
| + | contained in all the $ D ( A ( t) ) $ |
| + | and having the following properties: a) the operator $ A ( t) $ |
| + | acts boundedly from $ F $ |
| + | to $ E $ |
| + | and is continuous with respect to $ t $ |
| + | in the norm as a bounded operator from $ F $ |
| + | to $ E $; |
| + | and b) there is an isomorphism $ S $ |
| + | of $ F $ |
| + | onto $ E $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160326.png" /></td> </tr></table>
| + | $$ |
| + | S A ( t) S ^ {-} 1 = A ( t) + B ( t) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160327.png" /> is an operator function that is bounded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160328.png" /> and strongly measurable, and for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160329.png" /> is integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160330.png" />. Then there is an evolution operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160331.png" /> having the properties: 1); 2); 3') <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160332.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160333.png" /> is strongly continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160334.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160335.png" />; and 4') on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160336.png" /> the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160337.png" /> is strongly differentiable in the sense of the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160338.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160339.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160340.png" />. This assertion makes it possible to obtain existence theorems for the fundamental quasi-linear equations of mathematical physics of hyperbolic type. | + | where $ B ( t) $ |
| + | is an operator function that is bounded in $ E $ |
| + | and strongly measurable, and for which $ \| B ( t) \| $ |
| + | is integrable on $ [ 0 , T ] $. |
| + | Then there is an evolution operator $ U ( t , s ) $ |
| + | having the properties: 1); 2); 3') $ U ( t , s ) F \subset F $ |
| + | and $ U ( t , s ) $ |
| + | is strongly continuous in $ F $ |
| + | on $ T _ \Delta $; |
| + | and 4') on $ F $ |
| + | the operator $ U ( t , s ) $ |
| + | is strongly differentiable in the sense of the norm of $ E $ |
| + | and $ \partial U / \partial t = A ( t) U $, |
| + | $ \partial U / \partial s = - U A ( s) $. |
| + | This assertion makes it possible to obtain existence theorems for the fundamental quasi-linear equations of mathematical physics of hyperbolic type. |
| | | |
− | The method of frozen coefficients is used in the theory of parabolic equations. Suppose that, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160341.png" />, to the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160342.png" /> corresponds an operator semi-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160343.png" />. The unknown evolution operator formally satisfies the integral equations | + | The method of frozen coefficients is used in the theory of parabolic equations. Suppose that, for every $ t _ {0} \in [ 0 , T ] $, |
| + | to the equation $ \dot{u} = A ( t _ {0} ) u $ |
| + | corresponds an operator semi-group $ U _ {A ( t _ {0} ) } ( t) $. |
| + | The unknown evolution operator formally satisfies the integral equations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160344.png" /></td> </tr></table>
| + | $$ |
| + | U ( t , s ) = U _ {A ( t) } ( t - s ) + |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160345.png" /></td> </tr></table>
| + | $$ |
| + | + |
| + | \int\limits _ { s } ^ { t } U _ {A ( t) } ( t - s ) [ |
| + | A ( \tau ) - A ( t) ] U ( \tau , s ) d \tau , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160346.png" /></td> </tr></table>
| + | $$ |
| + | U ( t , s ) = U _ {A ( s) } ( t - s ) + |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160347.png" /></td> </tr></table>
| + | $$ |
| + | + |
| + | \int\limits _ { s } ^ { t } U ( t , \tau ) [ A ( \tau ) - |
| + | A ( s) ] U _ {A ( s) } ( \tau - s ) d \tau . |
| + | $$ |
| | | |
− | When the kernels of these equations have weak singularities, one can prove that the equation has solutions and also that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160348.png" /> is an evolution operator. The following statement has the most applications: If | + | When the kernels of these equations have weak singularities, one can prove that the equation has solutions and also that $ U ( t , s ) $ |
| + | is an evolution operator. The following statement has the most applications: If |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160349.png" /></td> </tr></table> | + | $$ |
| + | D ( A ( t) ) \equiv D ( A) ,\ \ |
| + | \| R ( \lambda , A ( t) ) \| < \ |
| + | M ( 1 + | \lambda | ) ^ {-} 1 |
| + | $$ |
| | | |
− | for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160350.png" /> and | + | for $ \mathop{\rm Re} \lambda \geq 0 $ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160351.png" /></td> </tr></table>
| + | $$ |
| + | \| [ A ( t) - A ( s) ] A ^ {-} 1 ( 0) \| \leq C | t - s | ^ \rho |
| + | $$ |
| | | |
− | (a Hölder condition), then there is an evolution operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160352.png" /> that gives a weak solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160353.png" /> of the Cauchy problem for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160354.png" />. Uniqueness of the solution holds under the single condition that the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160355.png" /> is continuous (in a Hilbert space). An existence theorem similar to the one given above holds for the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160356.png" /> with a condition of type (13) and for a certain relation between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160357.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160358.png" />. | + | (a Hölder condition), then there is an evolution operator $ U ( t , s ) $ |
| + | that gives a weak solution $ U ( t , s ) u _ {0} $ |
| + | of the Cauchy problem for every $ u _ {0} \in E $. |
| + | Uniqueness of the solution holds under the single condition that the operator $ A ( t) A ^ {-} 1 ( 0) $ |
| + | is continuous (in a Hilbert space). An existence theorem similar to the one given above holds for the operator $ A ( t) $ |
| + | with a condition of type (13) and for a certain relation between $ \beta $ |
| + | and $ \rho $. |
| | | |
− | The assumption that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160359.png" /> is constant does not make it possible in applications to consider boundary value problems with boundary conditions depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160360.png" />. Suppose that | + | The assumption that $ D ( A ( t) ) $ |
| + | is constant does not make it possible in applications to consider boundary value problems with boundary conditions depending on $ t $. |
| + | Suppose that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160361.png" /></td> </tr></table>
| + | $$ |
| + | \| R ( \lambda , A ( t) ) \| \leq M |
| + | ( 1 + | \lambda | ) ^ {-} 1 ,\ \ |
| + | \mathop{\rm Re} \lambda > 0 ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160362.png" /></td> </tr></table>
| + | $$ |
| + | \left \| |
| + | \frac{d A ^ {-} 1 ( t) }{dt} |
| + | - |
| + | \frac{d A ^ {-} 1 |
| + | ( s) }{ds} |
| + | \right \| \leq K | t - s | ^ \alpha ,\ 0 < \alpha < 1 ; |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160363.png" /></td> </tr></table>
| + | $$ |
| + | \left \| |
| + | \frac \partial {\partial t } |
| + | R ( \lambda , A ( t) ) |
| + | \right \| \leq N | \lambda | ^ {\rho - 1 } ,\ 0 \leq \rho \leq 1 , |
| + | $$ |
| | | |
− | in the sector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160364.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160365.png" />; then there is an evolution operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160366.png" />. Here it is not assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160367.png" /> is constant. There is a version of the last statement adapted to the consideration of parabolic problems in non-cylindrical domains, in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160368.png" /> for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160369.png" /> lies in some subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160370.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160371.png" />. | + | in the sector $ | \mathop{\rm arg} \lambda | \leq \pi - \phi $, |
| + | $ \phi < \pi / 2 $; |
| + | then there is an evolution operator $ U ( t , s ) $. |
| + | Here it is not assumed that $ D ( A ( t) ) $ |
| + | is constant. There is a version of the last statement adapted to the consideration of parabolic problems in non-cylindrical domains, in which $ D ( A ( t) ) $ |
| + | for every $ t $ |
| + | lies in some subspace $ E ( t) $ |
| + | of $ E $. |
| | | |
− | The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160372.png" /> for equation (16) formally satisfies the integral equation | + | The operator $ U ( t , s ) $ |
| + | for equation (16) formally satisfies the integral equation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160373.png" /></td> <td valign="top" style="width:5%;text-align:right;">(17)</td></tr></table>
| + | $$ \tag{17 } |
| + | U ( t , s ) = I + |
| + | \int\limits _ { s } ^ { t } A ( \tau ) U ( \tau , s ) d \tau . |
| + | $$ |
| | | |
− | Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160374.png" /> is unbounded, this equation cannot be solved by the method of successive approximation (cf. [[Sequential approximation, method of|Sequential approximation, method of]]). Suppose that there is a family of Banach spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160375.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160376.png" />, having the property that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160377.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160378.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160379.png" />. Suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160380.png" /> is bounded as an operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160381.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160382.png" />: | + | Since $ A ( t) $ |
| + | is unbounded, this equation cannot be solved by the method of successive approximation (cf. [[Sequential approximation, method of|Sequential approximation, method of]]). Suppose that there is a family of Banach spaces $ E _ \alpha $, |
| + | $ 0 \leq \alpha \leq 1 $, |
| + | having the property that $ E _ \beta \subset E _ \alpha $ |
| + | and $ \| x \| _ \alpha \leq \| x \| _ \beta $ |
| + | for $ \alpha < \beta $. |
| + | Suppose that $ A ( t) $ |
| + | is bounded as an operator from $ E _ \beta $ |
| + | to $ E _ \alpha $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160383.png" /></td> </tr></table>
| + | $$ |
| + | \| A ( t) \| _ {E _ \beta \rightarrow E _ \alpha } |
| + | \leq C ( \beta - \alpha ) ^ {-} 1 , |
| + | $$ |
| | | |
− | and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160384.png" /> is continuous with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160385.png" /> in the norm of the space of bounded operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160386.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160387.png" />. Then in this space the method of successive approximation for equation (17) will converge for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160388.png" />. In this way one can locally construct an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160389.png" /> as a bounded operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160390.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160391.png" />. In applications this approach gives theorems of Cauchy–Kovalevskaya type (cf. [[Cauchy–Kovalevskaya theorem|Cauchy–Kovalevskaya theorem]]). | + | and that $ A ( t) $ |
| + | is continuous with respect to $ t $ |
| + | in the norm of the space of bounded operators from $ E _ \beta $ |
| + | to $ E _ \alpha $. |
| + | Then in this space the method of successive approximation for equation (17) will converge for $ | t - s | \leq ( \beta - \alpha ) ( Ce ) ^ {-} 1 $. |
| + | In this way one can locally construct an operator $ U ( t , s ) $ |
| + | as a bounded operator from $ E _ \beta $ |
| + | to $ E _ \alpha $. |
| + | In applications this approach gives theorems of Cauchy–Kovalevskaya type (cf. [[Cauchy–Kovalevskaya theorem|Cauchy–Kovalevskaya theorem]]). |
| | | |
− | For the inhomogeneous equation (9) with known evolution operator, for the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160392.png" /> the solution of the Cauchy problem is formally written in the form | + | For the inhomogeneous equation (9) with known evolution operator, for the equation $ \dot{u} = A ( t) u $ |
| + | the solution of the Cauchy problem is formally written in the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160393.png" /></td> </tr></table>
| + | $$ |
| + | u ( t) = U ( t , s ) u _ {0} + |
| + | \int\limits _ { s } ^ { t } U ( t , \tau ) f ( \tau ) d \tau . |
| + | $$ |
| | | |
− | This formula can be justified in various cases under certain smoothness conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059160/l059160394.png" />. | + | This formula can be justified in various cases under certain smoothness conditions on $ f ( t) $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Functional analysis'' , Math. Reference Library , Moscow (1972) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.P. Glushko, "Degenerate linear differential equations" , Voronezh (1972) (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.P. Zubova, K.I. Chernyshovas, "A linear differential equation with a Fredholm operator acting on the derivative" , ''Differential Equations and their Applications'' , '''14''' , Vilnius (1976) pp. 21–29 (In Russian) (English abstract)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.N. Kuznetsov, "Differentiable solutions to degenerate systems of ordinary equations" ''Funct. Anal. Appl.'' , '''6''' : 2 (1972) pp. 119–127 ''Funktional. Anal. i Prilozhen.'' , '''6''' : 2 (1972) pp. 41–51</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S.G. Krein, G.I. Laptev, "An abstract scheme for the consideration of parabolic problems in noncylindrical regions" ''Differential Eq.'' , '''5''' (1969) pp. 1073–1081 ''Differentsial. Uravn.'' , '''5''' : 8 (1969) pp. 1458–1469</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> Yu.I. Lyubich, "The classical and local Laplace transformation in an abstract Cauchy problem" ''Russian Math. Surveys'' , '''21''' : 3 (1966) pp. 1–52 ''Uspekhi Mat. Nauk'' , '''21''' : 3 (1966) pp. 3–51</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> L.V. Ovsyannikov, "A singular operator in a scale of Banach spaces" ''Soviet Math. Dokl.'' , '''6''' (1965) pp. 1025–1028 ''Dokl. Akad. Nauk SSSR'' , '''163''' : 4 (1965) pp. 819–822</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> P.E. Sobolevskii, "Equations of parabolic type in a Banach space" ''Trudy Moskov. Mat. Obshch.'' , '''10''' (1961) pp. 297–350 (In Russian)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> R. Beals, "Laplace transform methods for evolution equations" H.G. Garnir (ed.) , ''Boundary value problems for linear evolution equations: partial differential equations. Proc. NATO Adv. Study Inst. Liège, 1976'' , Reidel (1977) pp. 1–26</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> A. Friedman, "Uniqueness of solutions of ordinary differential inequalities in Hilbert space" ''Arch. Rat. Mech. Anal.'' , '''17''' : 5 (1964) pp. 353–357</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> T. Kato, "Linear evolution equations of "hyperbolic" type II" ''J. Math. Assoc. Japan'' , '''25''' : 4 (1973) pp. 648–666</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> F. Trèves, "Basic linear partial differential equations" , Acad. Press (1975)</TD></TR><TR><TD valign="top">[17]</TD> <TD valign="top"> J. Miller, "Solution in Banach algebras of differential equations with irregular singular point" ''Acta Math.'' , '''110''' : 3–4 (1963) pp. 209–231</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1 {{MR|0617913}} {{ZBL|0435.46002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.G. Krein, "Linear differential equations in Banach space" , ''Transl. Math. Monogr.'' , '''29''' , Amer. Math. Soc. (1971) (Translated from Russian) {{MR|0342804}} {{ZBL|0179.20701}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) {{MR|0089373}} {{ZBL|0392.46001}} {{ZBL|0033.06501}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Functional analysis'' , Math. Reference Library , Moscow (1972) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> V.P. Glushko, "Degenerate linear differential equations" , Voronezh (1972) (In Russian) {{MR|}} {{ZBL|0265.34011}} {{ZBL|0252.34072}} {{ZBL|0241.34008}} {{ZBL|0235.34011}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian) {{MR|0352638}} {{ZBL|}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> S.P. Zubova, K.I. Chernyshovas, "A linear differential equation with a Fredholm operator acting on the derivative" , ''Differential Equations and their Applications'' , '''14''' , Vilnius (1976) pp. 21–29 (In Russian) (English abstract) {{MR|0470716}} {{ZBL|}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.N. Kuznetsov, "Differentiable solutions to degenerate systems of ordinary equations" ''Funct. Anal. Appl.'' , '''6''' : 2 (1972) pp. 119–127 ''Funktional. Anal. i Prilozhen.'' , '''6''' : 2 (1972) pp. 41–51 {{MR|}} {{ZBL|0259.34005}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> S.G. Krein, G.I. Laptev, "An abstract scheme for the consideration of parabolic problems in noncylindrical regions" ''Differential Eq.'' , '''5''' (1969) pp. 1073–1081 ''Differentsial. Uravn.'' , '''5''' : 8 (1969) pp. 1458–1469 {{MR|}} {{ZBL|0254.35064}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> Yu.I. Lyubich, "The classical and local Laplace transformation in an abstract Cauchy problem" ''Russian Math. Surveys'' , '''21''' : 3 (1966) pp. 1–52 ''Uspekhi Mat. Nauk'' , '''21''' : 3 (1966) pp. 3–51 {{MR|}} {{ZBL|0173.12002}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> L.V. Ovsyannikov, "A singular operator in a scale of Banach spaces" ''Soviet Math. Dokl.'' , '''6''' (1965) pp. 1025–1028 ''Dokl. Akad. Nauk SSSR'' , '''163''' : 4 (1965) pp. 819–822 {{MR|}} {{ZBL|0144.39003}} </TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> P.E. Sobolevskii, "Equations of parabolic type in a Banach space" ''Trudy Moskov. Mat. Obshch.'' , '''10''' (1961) pp. 297–350 (In Russian) {{MR|0141900}} {{ZBL|}} </TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> R. Beals, "Laplace transform methods for evolution equations" H.G. Garnir (ed.) , ''Boundary value problems for linear evolution equations: partial differential equations. Proc. NATO Adv. Study Inst. Liège, 1976'' , Reidel (1977) pp. 1–26 {{MR|0492648}} {{ZBL|0374.35039}} </TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> A. Friedman, "Uniqueness of solutions of ordinary differential inequalities in Hilbert space" ''Arch. Rat. Mech. Anal.'' , '''17''' : 5 (1964) pp. 353–357 {{MR|0171181}} {{ZBL|0143.16701}} </TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> T. Kato, "Linear evolution equations of "hyperbolic" type II" ''J. Math. Assoc. Japan'' , '''25''' : 4 (1973) pp. 648–666 {{MR|0326483}} {{ZBL|0262.34048}} </TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> F. Trèves, "Basic linear partial differential equations" , Acad. Press (1975) {{MR|0447753}} {{ZBL|0305.35001}} </TD></TR><TR><TD valign="top">[17]</TD> <TD valign="top"> J. Miller, "Solution in Banach algebras of differential equations with irregular singular point" ''Acta Math.'' , '''110''' : 3–4 (1963) pp. 209–231 {{MR|0153939}} {{ZBL|0122.35303}} </TD></TR></table> |
An equation of the form
$$ \tag{1 }
A _ {0} ( t) \dot{u} = A _ {1} ( t) u + g ( t) ,
$$
where $ A _ {0} ( t) $
and $ A _ {1} ( t) $,
for every $ t $,
are linear operators in a Banach space $ E $,
$ g ( t) $
is a given function and $ u ( t) $
an unknown function, both with values in $ E $;
the derivative $ \dot{u} $
is understood to be the limit of the difference quotient with respect to the norm of $ E $.
1. Linear differential equations with a bounded operator.
Suppose that $ A _ {0} ( t) $
and $ A _ {1} ( t) $,
for every $ t $,
are bounded operators acting in $ E $.
If $ A _ {0} ( t) $
has a bounded inverse for every $ t $,
then (1) can be solved for the derivative and takes the form
$$ \tag{2 }
\dot{u} = A ( t) u + f ( t) ,
$$
where $ A ( t) $
is a bounded operator in $ E $,
and $ f ( t) $
and $ u ( t) $
are functions with values in $ E $.
If the functions $ A ( t) $
and $ f ( t) $
are continuous (or, more generally, are measurable and integrable on every finite interval), then the solution of the Cauchy problem
$$ \tag{3 }
\dot{u} = A ( t) u ,\ u ( s) = u _ {0} ,
$$
exists for any $ u _ {0} \in E $
and is given by the formula
$$
u ( t) = U ( t , s ) u _ {0} ,
$$
where
$$ \tag{4 }
U ( t , s ) =
$$
$$
= \
I + \int\limits _ { s } ^ { t } A ( t _ {1} ) dt _ {1} + \sum
_ {n=2} ^ \infty \int\limits _ { s } ^ { t } \int\limits _ { s } ^ { {t _ n} } \dots \int\limits _ { s } ^ { {t } _ {2} } A ( t _ {n} ) \dots A ( t _ {1} ) d t _ {1} \dots d t _ {n} $$
is the evolution operator of the equation $ \dot{u} = A ( t) u $.
The solution of the Cauchy problem for equation (2) is determined by the formula
$$
u ( t) = U ( t , s ) u _ {0} + \int\limits _ { s } ^ { t } U ( t , \tau ) f (
\tau ) d \tau .
$$
From (4) one obtains the estimate
$$ \tag{5 }
\| U ( t , s ) \| \leq \mathop{\rm exp}
\left \{ \int\limits _ { s } ^ { t } \| A ( \tau ) \| d \tau \right \} ;
$$
a refinement of it is:
$$ \tag{5'}
\| U ( t , s ) \| \leq \mathop{\rm exp} \left \{ \int\limits _ { s } ^ { t } r _ {A} ( \tau ) d \tau \right \} ,
$$
where $ r _ {A} ( \tau ) $
is the spectral radius of the operator $ A ( \tau ) $.
The evolution operator has the properties
$$
U ( s , s ) = I ,\ U ( t , \tau ) U ( \tau , s ) = U ( t , s),
$$
$$
U ( t , \tau ) = [ U ( \tau , t ) ] ^ {-} 1 .
$$
In the study of (2) the main attention has been focused on the behaviour of its solutions at infinity, in dependence on the behaviour of $ A ( t) $
and $ f ( t) $.
An important characteristic of the equation is the general (or singular) exponent
$$
\kappa = \overline{\lim\limits}\; _ {\tau , s \rightarrow \infty }
\frac{1} \tau
\mathop{\rm ln}
\| U ( \tau + s , s ) \| .
$$
Equations with periodic and almost-periodic coefficients have been studied in detail (see Qualitative theory of differential equations in Banach spaces).
Equation (2) can also be considered in the complex plane. If the functions $ A ( t) $
and $ f ( t) $
are holomorphic in a simply-connected domain containing the point $ s $,
then the formulas (3), (4), (5), (5'}) remain valid if the integrals are understood to be integrals over a rectifiable arc joining $ s $
and $ t $.
A number of other questions arises in the case when the original linear equation is not solvable for the derivative. If the operator $ A _ {0} ( t) $
is boundedly invertible everywhere except at one point, say $ t = 0 $,
then in the space $ E $
the equation reduces to the form
$$ \tag{6 }
a ( t) \dot{u} = A ( t) u + f ( t) ,
$$
where $ a ( t) $
is a scalar function and $ a ( 0) = 0 $.
Here the main attention is focused on the study of the behaviour of the solutions in a neighbourhood of the origin, and the analytic and non-analytic cases are distinguished.
The analytic case.
For the simplest equation
$$
t \dot{u} = A u
$$
with a constant operator $ A $,
the evolution operator $ U ( t) = U ( t , 0 ) $
has the form
$$
U ( t) = e ^ {A \mathop{\rm ln} t } ,
$$
and the solutions are not single-valued: as one goes round the origin in the positive direction they are multiplied by the operator $ e ^ {2 \pi i A } $.
Consider an equation with a regular singularity
$$ \tag{7 }
t \dot{u} = \left ( \sum _ { k=0} ^ \infty A ^ {(} k) t ^ {k} \right ) u ,
$$
where the series on the right-hand side converges in a neighbourhood of the origin. If one looks for the operator $ U ( t) $
in the form of a series
$$
U ( t) = \left ( \sum _ { k=0} ^ \infty U ^ {(} k) t ^ {k} \right ) e ^ {A ^ {(0)} \mathop{\rm ln} t } ,
$$
then for the determination of the coefficients $ U ^ {(k)} $
one obtains the system of equations
$$
A ^ {(0)} U ^ {(} 0) - U ^ {(0)} A ^ {(0)} = 0 ,
$$
$$
( A ^ {(} 0) - kI ) U ^ {(} k) - U ^ {(} k) A ^ {(0)} = - \sum _{j=1} ^ { k } A ^ {(} j) u ^ {( k- j ) } ,\ k = 1 , 2 , . . . .
$$
For this system to be solvable, that is, for (7) to be formally solvable, it is sufficient that the spectra of the operators $ A ^ {(} 0) $
and $ A ^ {(} 0) - kI $
do not intersect (cf. Spectrum of an operator), or, equivalently, that there are no points differing by an integer in the spectrum of $ A ^ {(0)} $.
Under this condition the series
$$
\sum _{k=0} ^ \infty U ^ {(k)} {t ^ {k} }
$$
converges in the same neighbourhood of zero as the series for $ A ( t) $.
Now, if there are finitely many integers representable as differences of points of the spectrum of $ A ^ {(} 0) $,
and each of them is an isolated point of the spectrum of the transformer
$$
\mathfrak A X = A ^ {(} 0) X - X A ^ {(} 0) ,
$$
then there is a solution of the form
$$
U ( t) = \left ( I + \sum _ {k=1} ^ \infty U _ {k} ( \mathop{\rm ln} t ) t
^ {k} \right ) e ^ {A ^ {(0)} \mathop{\rm ln} t } ,\ 0 < | t | < \rho ,
$$
where the $ U _ {k} $
are entire functions of the argument $ \mathop{\rm ln} t $,
satisfying for every $ \epsilon > 0 $
the condition
$$
\| U _ {k} ( \mathop{\rm ln} t ) \| \leq C _ \epsilon e ^ {\epsilon
| \mathop{\rm ln} t | } .
$$
If the integer points of the spectrum of the transformer $ \mathfrak A $
are poles of its resolvent, then the functions $ U _ {k} $
are polynomials.
In the case of an irregular singularity, the differential equation
$$
t ^ {m} \dot{u} = \left ( \sum _ { k=0} ^ { m-1} A ^ {(k)} t ^ {k} \right ) u
$$
has been considered in a Banach algebra $ \mathfrak B $(
for example, in the algebra of bounded operators on a Banach space $ E $).
Under certain restrictions on $ A ^ {(} 0) $
it reduces by means of Laplace integrals to an equation with a regular singularity $ ( m = 1 ) $
in the algebra of matrices with entries from $ \mathfrak B $.
The non-analytic case.
Suppose that in the equation
$$
t ^ {n} \dot{u} = A ( t) u + f ( t) ,\ 0 \leq t \leq T ,
$$
the functions $ A ( t) $
and $ f ( t) $
are infinitely differentiable. In the finite-dimensional case a complete result has been obtained: If the equation has a formal solution in the form of a power series, then it has a solution that is infinitely differentiable on $ [ 0 , T ] $
for which the formal series is the Taylor series at the point $ t = 0 $.
In the infinite-dimensional case there is only a number of sufficient conditions for the existence of infinitely-differentiable solutions.
Suppose that $ m > 1 $.
If the spectrum of the operator $ A ( 0) $
does not intersect the imaginary axis, then there is a family of infinitely-differentiable solutions that depends on an arbitrary element $ g ^ {-} $
belonging to the invariant subspace of $ A ( 0) $
corresponding to the part of the spectrum of $ A ( 0) $
lying in the left half-plane. Any solution that is continuous on $ [ 0 , T] $
appears in this family. If the whole spectrum of $ A ( 0) $
lies in the left half-plane, then there is only one infinitely-differentiable solution.
Suppose that $ m = 1 $.
If there are no negative integers in the spectrum of $ A ( 0) $,
then there is a unique infinitely-differentiable solution. Under similar assumptions about the operator $ A ( 0) $,
equations of the form (6) have been considered in which $ a ( t) $
and $ f ( t) $
have finite smoothness, and the solutions have the same smoothness.
A rather different picture emerges when the differential equation is unsolvable for the derivative for all $ t $,
for example when $ A $
is a constant non-invertible operator. Suppose that in the equation
$$ \tag{8 }
A \dot{u} = B u
$$
the operators $ A $
and $ B $
are bounded in the space $ E $
and $ A $
is a non-invertible Fredholm operator. Suppose that the operator $ A + \epsilon B $
is continuously invertible for sufficiently small $ \epsilon $.
Then there are decompositions into direct sums $ E= N ^ {(} 1) + M ^ {(} 1) $
and $ E = N ^ {(} 2) + M ^ {(} 2) $
such that $ A $
and $ B $
map $ N ^ {(} 1) $
into $ N ^ {(} 2) $
and $ M ^ {(} 1) $
into $ M ^ {(} 2) $.
The operator $ A $
is invertible on $ M ^ {(} 1) $
and maps onto $ M ^ {(} 2) $.
The subspace $ N ^ {(} 1) $
is finite-dimensional. All solutions of (8) lie in the subspace $ M ^ {(} 1) $
and have the form $ \mathop{\rm exp} ( \widetilde{A} {} ^ {-} 1 Bt ) u _ {0} $,
where $ \widetilde{A} $
is the restriction of $ A $
to $ M ^ {(} 1) $
and $ u _ {0} \in M ^ {(} 1) $.
For an inhomogeneous equation $ A \dot{u} = Bu + f ( t) $,
a solution exists only if $ f ( t) $
has a certain smoothness and under certain compatibility conditions for the values of $ f( t) $
and its derivatives with the initial data. The number of derivatives that certain components of $ f ( t) $
must have and the number of compatibility conditions are equal to the maximal length of $ B $-
adjoint chains of the operator $ A $.
If these conditions are satisfied, the solution of the Cauchy problem is unique.
If the operator $ A + \epsilon B $
is non-invertible for all $ \epsilon $,
then all solutions of (8) lie in a subspace that has, generally speaking, infinite deficiency (cf. also Deficiency subspace). The solution of the Cauchy problem for it is not unique. For the function $ f( t) $
in the inhomogeneous equation infinitely many differentiability conditions and compatibility conditions are required.
2. Linear differential equations with an unbounded operator.
Suppose that $ A _ {0} ( t) $
is invertible for every $ t $,
so that (1) can be solved for the derivative and takes the form
$$ \tag{9 }
\dot{u} = A ( t) u + f ( t) ,
$$
and suppose that here $ A ( t) $
is an unbounded operator in a space $ E $,
with dense domain of definition $ D ( A ( t) ) $
in $ E $
and with non-empty resolvent set, and suppose that $ f ( t) $
is a given function and $ u ( t) $
an unknown function, both with values in $ E $.
Even for the simplest equation $ \dot{u} = Au $
with an unbounded operator, solutions of the Cauchy problem $ u ( 0) = u _ {0} $
need not exist, they may be non-unique, and they may be non-extendable to the whole semi-axis, so the main investigations are devoted to the questions of existence and uniqueness of the solutions. A solution of the equation $ \dot{u} = Au $
on the interval $ [ 0, T ] $
is understood to be a function that takes values in $ D ( A) $,
is differentiable on $ [ 0, T ] $
and satisfies the equation. Sometimes this definition is too rigid and one introduces the concept of a weak solution as a function that has the same properties on $ ( 0 , T ] $
and is only continuous at $ 0 $.
Suppose that the operator $ A $
has a resolvent
$$
R ( \lambda , A ) = ( A - \lambda I ) ^ {-} 1
$$
for all sufficiently large positive $ \lambda $
and that
$$
\overline{\lim\limits}\; _ {\lambda \rightarrow \infty } \lambda ^ {-} 1 \mathop{\rm ln} \| R
( \lambda , A ) \| = h < T .
$$
Then the weak solution of the problem
$$ \tag{10 }
\dot{u} = Au ,\ u ( 0) = u _ {0} $$
is unique on $ [ 0 , T - h ] $
and can be branched for $ t = T - h $.
If $ h = 0 $,
then the solution is unique on the whole semi-axis. This assertion is precise as regards the behaviour of $ R ( \lambda , A ) $
as $ \lambda \rightarrow \infty $.
If for every $ u _ {0} \in D ( A) $
there is a unique solution of the problem (10) that is continuously differentiable on $ [ 0 , T ] $,
then this solution can be extended to the whole semi-axis and can be represented in the form $ u ( t) = U ( t) u _ {0} $,
where $ U ( t) $
is a strongly-continuous semi-group of bounded operators on $ [ 0 , \infty ) $,
$ U ( 0) = I $,
for which the estimate $ \| U ( t) \| \leq M e ^ {\omega t } $
holds. For the equation to have this property it is necessary and sufficient that
$$ \tag{11 }
\| ( \lambda - \omega ) ^ {m} R ^ {m} ( \lambda , A ) \| \leq M
$$
for all $ \lambda > \omega $
and $ m = 1 , 2 \dots $
where $ M $
does not depend on $ \lambda $
and $ m $.
These conditions are difficult to verify. They are satisfied if $ \| ( \lambda - \omega ) R ( \lambda , A ) \| \leq 1 $,
and then $ \| U ( t) \| \leq e ^ {\omega t } $.
If $ \omega = 0 $,
then $ U ( t) $
is a contraction semi-group. This is so if and only if $ A $
is a maximal dissipative operator. If $ u _ {0} \notin D ( A) $,
then the function $ U ( t) u _ {0} $
is not differentiable (in any case for $ t = 0 $);
it is often called the generalized solution of (10). Solutions of the equation $ \dot{u} = Au $
can be constructed as the limit, as $ n \rightarrow \infty $,
of solutions of the equation $ \dot{u} = A _ {n} u $
with bounded operators, under the same initial conditions. For this it is sufficient that the operators $ A _ {n} $
commute, converge strongly to $ A $
on $ D ( A) $
and that
$$
\| e ^ {t A _ {n} } \| \leq M e ^ {\omega t } .
$$
If the conditions (11) are satisfied, then the operators $ A _ {n} = - nI - n ^ {2} R ( \lambda , A ) $(
Yosida operators) have these properties.
Another method for constructing solutions of the equation $ \dot{u} = A u $
is based on Laplace transformation. If the resolvent of $ A $
is defined on some contour $ \Gamma $,
then the function
$$ \tag{12 }
u ( t) = -
\frac{1}{2 \pi i }
\int\limits _ \Gamma e ^ {\lambda t } R (
\lambda , A ) u _ {0} d \lambda
$$
formally satisfies the equation
$$
\dot{u} = A u +
\frac{1}{2 \pi i }
\int\limits _ \Gamma e ^ {\lambda t } \
d \lambda u _ {0} .
$$
If the convergence of the integrals, the validity of differentiation under the integral sign and the vanishing of the last integral are ensured, then $ u ( t) $
satisfies the equation. The difficulty lies in the fact that the norm of the resolvent cannot decrease faster than $ | \lambda | ^ {-} 1 $
at infinity. However, on some elements it does decrease faster. For example, if $ R ( \lambda , A ) $
is defined for $ \mathop{\rm Re} \lambda \geq \alpha $
and if
$$
\| R ( \lambda , A ) \| \leq M | \lambda | ^ {k} ,\ k \geq - 1 ,
$$
for sufficiently large $ | \lambda | $,
then for $ \Gamma = ( - i \infty , i \infty ) $
formula (12) gives a solution for any $ u _ {0} \in D ( A ^ {[ k ] + 3 } ) $.
In a "less good" case, when the previous inequality is satisfied only in the domain
$$
\mathop{\rm Re} \lambda \geq \alpha | \mathop{\rm Im} \lambda | ^ {a} ,\ 0
< a < 1
$$
(weakly hyperbolic equations), and $ \Gamma $
is the boundary of this domain, one obtains a solution only for an $ u _ {0} $
belonging to the intersection of the domains of definition of all powers of $ A $,
with definite behaviour of $ \| A ^ {n} u _ {0} \| $
as $ n \rightarrow \infty $.
Significantly weaker solutions are obtained in the case when $ \Gamma $
goes into the left half-plane, and one can use the decrease of the function $ | e ^ {\lambda t } | $
on it. As a rule, the solutions have increased smoothness for $ t > 0 $.
If the resolvent is bounded on the contour $ \Gamma $:
$ \mathop{\rm Re} \lambda = - \psi ( | \mathop{\rm Im} \lambda | ) $,
where $ \psi ( \tau ) $
is a smooth non-decreasing concave function that increases like $ \mathop{\rm ln} \tau $
at $ \infty $,
then for any $ u _ {0} \in E $
the function (12) is differentiable and satisfies the equation, beginning with some $ t _ {0} $;
as $ t $
increases further, its smoothness increases. If $ \psi ( \tau ) $
increases like a power of $ \tau $
with exponent less than one, then the function (12) is infinitely differentiable for $ t > 0 $;
if $ \psi ( \tau ) $
increases like $ \tau / \mathop{\rm ln} \tau $,
then $ u ( t) $
belongs to a quasi-analytic class of functions; if it increases like a linear function, then $ u ( t) $
is analytic. In all these cases it satisfies the equation $ \dot{u} = A u $.
The existence of the resolvent on contours that go into the left half-plane may be obtained, by using series expansion, from the corresponding estimates on vertical lines. If for $ \mathop{\rm Re} \lambda \geq \gamma $,
$$ \tag{13 }
\| R ( \lambda , A ) \| \leq M ( 1 + | \mathop{\rm Im} \lambda | ) ^
{- \beta } ,\ 0 < \beta < 1 ,
$$
then for every $ u _ {0} \in D ( A) $
there is a solution of problem (10). All these solutions are infinitely differentiable for $ t > 0 $.
They can be represented in the form $ u ( t) = U ( t) u _ {0} $,
where $ U ( t) $
is an infinitely-differentiable semi-group for $ t > 0 $
having, generally speaking, a singularity at $ t = 0 $.
For its derivatives one has the estimates
$$
\| U ( k) ( t) \| \leq M _ {k} t ^ {1 - ( k+ 1 ) / \beta } e ^ {
\omega t } .
$$
If the estimate (13) is satisfied for $ \beta = 1 $,
then all generalized solutions of the equation $ \dot{u} = Au $
are analytic in some sector containing the positive semi-axis.
The equation $ \dot{u} = Au $
is called an abstract parabolic equation if there is a unique weak solution on $ [ 0 , \infty ] $
satisfying the initial condition $ u ( 0) = u _ {0} $
for any $ u _ {0} \in E $.
If
$$ \tag{14 }
\| R ( \lambda , A ) \| \leq M | \lambda - \omega | ^ {-} 1 \ \
\textrm{ for } \mathop{\rm Re} \lambda > \omega ,
$$
then the equation is an abstract parabolic equation. All its generalized solutions are analytic in some sector containing the positive semi-axis, and
$$
\| \dot{u} ( t) \| \leq t ^ {-} 1 C e ^ {\omega t } \| u _ {0} \| ,
$$
where $ C $
does not depend on $ u _ {0} $.
Conversely, if the equation has the listed properties, then (14) is satisfied for the operator $ A $.
If problem (10) has a unique weak solution for any $ u _ {0} \in D ( A) $
for which the derivative is integrable on every finite interval, then these solutions can be represented in the form $ u ( t) = U ( t) u _ {0} $,
where $ U ( t) $
is a strongly-continuous semi-group on $ ( 0 , \infty ) $,
and every weak solution of the inhomogeneous equation $ \dot{v} = Av + f ( t) $
with initial condition $ v ( 0) = 0 $
can be represented in the form
$$ \tag{15 }
v ( t) = \int\limits _ { 0 } ^ { t } U ( t- s ) f ( s) ds .
$$
The function $ v ( t) $
is defined for any continuous $ f ( t) $,
hence it is called a generalized solution of the inhomogeneous equation. To ensure that it is differentiable, one imposes smoothness conditions on $ f ( t) $,
and the "worse" the semi-group $ U ( t) $,
the "higher" these should be. Thus, under the previous conditions, (15) is a weak solution of the inhomogeneous equation if $ f ( t) $
is twice continuously differentiable; if (11) is satisfied, then (15) is a solution if $ f ( t) $
is continuously differentiable; if (13) is satisfied with $ \beta > 2/3 $,
then $ v ( t) $
is a weak solution if $ f ( t) $
satisfies a Hölder condition with exponent $ \gamma > 2 ( 1 - 1/ \beta ) $.
Instead of smoothness of $ f ( t) $
with respect to $ t $
one can require that the values of $ f ( t) $
belong to the domain of definition of the corresponding power of $ A $.
For an equation with variable operator
$$ \tag{16 }
\dot{u} = A ( t) u ,\ \
0 \leq t \leq T ,
$$
there are some fundamental existence and uniqueness theorems about solutions (weak solutions) of the Cauchy problem $ u ( s) = u _ {0} $
on the interval $ s \leq t \leq T $.
If the domain of definition of $ A ( t) $
does not depend on $ t $,
$$
D ( A ( t) ) \equiv D ( A),
$$
if the operator $ A ( t) $
is strongly continuous with respect to $ t $
on $ D ( A) $
and if
$$
\| \lambda R ( \lambda , A ( t) ) \| \leq 1
$$
for $ \lambda > 0 $,
then the solution of the Cauchy problem is unique. Moreover, if $ A ( t) $
is strongly continuously differentiable on $ D ( A) $,
then for every $ u _ {0} \in D ( A) $
a solution exists and can be represented in the form
$$
u ( t) = U ( t , s ) u _ {0} ,
$$
where $ U ( t , s ) $
is an evolution operator with the following properties:
1) $ U ( t , s ) $
is strongly continuous in the triangle $ T _ \Delta $:
$ 0 \leq s \leq t \leq T $;
2) $ U ( t , s ) = U ( t , \tau ) U ( \tau , s ) $,
$ 0 \leq s \leq \tau \leq t \leq T $,
$ U ( s , s ) = I $;
3) $ U ( t , s ) $
maps $ D ( A) $
into itself and the operator
$$
A ( t) U ( t , s ) A ^ {-} 1 ( s)
$$
is bounded and strongly continuous in $ T _ \Delta $;
4) on $ D ( A) $
the operator $ U ( t , s ) $
is strongly differentiable with respect to $ t $
and $ s $
and
$$
\frac{\partial U }{\partial t }
= A ( t) U ,\ \
\frac{\partial U }{\partial s }
= - U A ( s) .
$$
The construction of the operator $ U ( t , s ) $
is carried out by approximating $ A ( t) $
by bounded operators $ A _ {n} ( t) $
and replacing the latter by piecewise-constant operators.
In many important problems the previous conditions on the operator $ A ( t) $
are not satisfied. Suppose that for the operator $ A ( t) $
there are constants $ M $
and $ \omega $
such that
$$
\| R ( \lambda , A ( t _ {k} ) ) \dots R ( \lambda , A ( t _ {1} ) ) \|
\leq M ( \lambda - \omega ) ^ {-} k
$$
for all $ \lambda > \omega $,
$ 0 \leq t _ {1} \leq \dots \leq t _ {k} \leq T $,
$ k = 1 , 2, . . . $.
Suppose that in $ E $
there is densely imbedded a Banach space $ F $
contained in all the $ D ( A ( t) ) $
and having the following properties: a) the operator $ A ( t) $
acts boundedly from $ F $
to $ E $
and is continuous with respect to $ t $
in the norm as a bounded operator from $ F $
to $ E $;
and b) there is an isomorphism $ S $
of $ F $
onto $ E $
such that
$$
S A ( t) S ^ {-} 1 = A ( t) + B ( t) ,
$$
where $ B ( t) $
is an operator function that is bounded in $ E $
and strongly measurable, and for which $ \| B ( t) \| $
is integrable on $ [ 0 , T ] $.
Then there is an evolution operator $ U ( t , s ) $
having the properties: 1); 2); 3') $ U ( t , s ) F \subset F $
and $ U ( t , s ) $
is strongly continuous in $ F $
on $ T _ \Delta $;
and 4') on $ F $
the operator $ U ( t , s ) $
is strongly differentiable in the sense of the norm of $ E $
and $ \partial U / \partial t = A ( t) U $,
$ \partial U / \partial s = - U A ( s) $.
This assertion makes it possible to obtain existence theorems for the fundamental quasi-linear equations of mathematical physics of hyperbolic type.
The method of frozen coefficients is used in the theory of parabolic equations. Suppose that, for every $ t _ {0} \in [ 0 , T ] $,
to the equation $ \dot{u} = A ( t _ {0} ) u $
corresponds an operator semi-group $ U _ {A ( t _ {0} ) } ( t) $.
The unknown evolution operator formally satisfies the integral equations
$$
U ( t , s ) = U _ {A ( t) } ( t - s ) +
$$
$$
+
\int\limits _ { s } ^ { t } U _ {A ( t) } ( t - s ) [
A ( \tau ) - A ( t) ] U ( \tau , s ) d \tau ,
$$
$$
U ( t , s ) = U _ {A ( s) } ( t - s ) +
$$
$$
+
\int\limits _ { s } ^ { t } U ( t , \tau ) [ A ( \tau ) -
A ( s) ] U _ {A ( s) } ( \tau - s ) d \tau .
$$
When the kernels of these equations have weak singularities, one can prove that the equation has solutions and also that $ U ( t , s ) $
is an evolution operator. The following statement has the most applications: If
$$
D ( A ( t) ) \equiv D ( A) ,\ \
\| R ( \lambda , A ( t) ) \| < \
M ( 1 + | \lambda | ) ^ {-} 1
$$
for $ \mathop{\rm Re} \lambda \geq 0 $
and
$$
\| [ A ( t) - A ( s) ] A ^ {-} 1 ( 0) \| \leq C | t - s | ^ \rho
$$
(a Hölder condition), then there is an evolution operator $ U ( t , s ) $
that gives a weak solution $ U ( t , s ) u _ {0} $
of the Cauchy problem for every $ u _ {0} \in E $.
Uniqueness of the solution holds under the single condition that the operator $ A ( t) A ^ {-} 1 ( 0) $
is continuous (in a Hilbert space). An existence theorem similar to the one given above holds for the operator $ A ( t) $
with a condition of type (13) and for a certain relation between $ \beta $
and $ \rho $.
The assumption that $ D ( A ( t) ) $
is constant does not make it possible in applications to consider boundary value problems with boundary conditions depending on $ t $.
Suppose that
$$
\| R ( \lambda , A ( t) ) \| \leq M
( 1 + | \lambda | ) ^ {-} 1 ,\ \
\mathop{\rm Re} \lambda > 0 ;
$$
$$
\left \|
\frac{d A ^ {-} 1 ( t) }{dt}
-
\frac{d A ^ {-} 1
( s) }{ds}
\right \| \leq K | t - s | ^ \alpha ,\ 0 < \alpha < 1 ;
$$
$$
\left \|
\frac \partial {\partial t }
R ( \lambda , A ( t) )
\right \| \leq N | \lambda | ^ {\rho - 1 } ,\ 0 \leq \rho \leq 1 ,
$$
in the sector $ | \mathop{\rm arg} \lambda | \leq \pi - \phi $,
$ \phi < \pi / 2 $;
then there is an evolution operator $ U ( t , s ) $.
Here it is not assumed that $ D ( A ( t) ) $
is constant. There is a version of the last statement adapted to the consideration of parabolic problems in non-cylindrical domains, in which $ D ( A ( t) ) $
for every $ t $
lies in some subspace $ E ( t) $
of $ E $.
The operator $ U ( t , s ) $
for equation (16) formally satisfies the integral equation
$$ \tag{17 }
U ( t , s ) = I +
\int\limits _ { s } ^ { t } A ( \tau ) U ( \tau , s ) d \tau .
$$
Since $ A ( t) $
is unbounded, this equation cannot be solved by the method of successive approximation (cf. Sequential approximation, method of). Suppose that there is a family of Banach spaces $ E _ \alpha $,
$ 0 \leq \alpha \leq 1 $,
having the property that $ E _ \beta \subset E _ \alpha $
and $ \| x \| _ \alpha \leq \| x \| _ \beta $
for $ \alpha < \beta $.
Suppose that $ A ( t) $
is bounded as an operator from $ E _ \beta $
to $ E _ \alpha $:
$$
\| A ( t) \| _ {E _ \beta \rightarrow E _ \alpha }
\leq C ( \beta - \alpha ) ^ {-} 1 ,
$$
and that $ A ( t) $
is continuous with respect to $ t $
in the norm of the space of bounded operators from $ E _ \beta $
to $ E _ \alpha $.
Then in this space the method of successive approximation for equation (17) will converge for $ | t - s | \leq ( \beta - \alpha ) ( Ce ) ^ {-} 1 $.
In this way one can locally construct an operator $ U ( t , s ) $
as a bounded operator from $ E _ \beta $
to $ E _ \alpha $.
In applications this approach gives theorems of Cauchy–Kovalevskaya type (cf. Cauchy–Kovalevskaya theorem).
For the inhomogeneous equation (9) with known evolution operator, for the equation $ \dot{u} = A ( t) u $
the solution of the Cauchy problem is formally written in the form
$$
u ( t) = U ( t , s ) u _ {0} +
\int\limits _ { s } ^ { t } U ( t , \tau ) f ( \tau ) d \tau .
$$
This formula can be justified in various cases under certain smoothness conditions on $ f ( t) $.
References
[1] | K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1 MR0617913 Zbl 0435.46002 |
[2] | S.G. Krein, "Linear differential equations in Banach space" , Transl. Math. Monogr. , 29 , Amer. Math. Soc. (1971) (Translated from Russian) MR0342804 Zbl 0179.20701 |
[3] | E. Hille, R.S. Phillips, "Functional analysis and semi-groups" , Amer. Math. Soc. (1957) MR0089373 Zbl 0392.46001 Zbl 0033.06501 |
[4] | , Functional analysis , Math. Reference Library , Moscow (1972) (In Russian) |
[5] | V.P. Glushko, "Degenerate linear differential equations" , Voronezh (1972) (In Russian) Zbl 0265.34011 Zbl 0252.34072 Zbl 0241.34008 Zbl 0235.34011 |
[6] | Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian) MR0352638 |
[7] | S.P. Zubova, K.I. Chernyshovas, "A linear differential equation with a Fredholm operator acting on the derivative" , Differential Equations and their Applications , 14 , Vilnius (1976) pp. 21–29 (In Russian) (English abstract) MR0470716 |
[8] | A.N. Kuznetsov, "Differentiable solutions to degenerate systems of ordinary equations" Funct. Anal. Appl. , 6 : 2 (1972) pp. 119–127 Funktional. Anal. i Prilozhen. , 6 : 2 (1972) pp. 41–51 Zbl 0259.34005 |
[9] | S.G. Krein, G.I. Laptev, "An abstract scheme for the consideration of parabolic problems in noncylindrical regions" Differential Eq. , 5 (1969) pp. 1073–1081 Differentsial. Uravn. , 5 : 8 (1969) pp. 1458–1469 Zbl 0254.35064 |
[10] | Yu.I. Lyubich, "The classical and local Laplace transformation in an abstract Cauchy problem" Russian Math. Surveys , 21 : 3 (1966) pp. 1–52 Uspekhi Mat. Nauk , 21 : 3 (1966) pp. 3–51 Zbl 0173.12002 |
[11] | L.V. Ovsyannikov, "A singular operator in a scale of Banach spaces" Soviet Math. Dokl. , 6 (1965) pp. 1025–1028 Dokl. Akad. Nauk SSSR , 163 : 4 (1965) pp. 819–822 Zbl 0144.39003 |
[12] | P.E. Sobolevskii, "Equations of parabolic type in a Banach space" Trudy Moskov. Mat. Obshch. , 10 (1961) pp. 297–350 (In Russian) MR0141900 |
[13] | R. Beals, "Laplace transform methods for evolution equations" H.G. Garnir (ed.) , Boundary value problems for linear evolution equations: partial differential equations. Proc. NATO Adv. Study Inst. Liège, 1976 , Reidel (1977) pp. 1–26 MR0492648 Zbl 0374.35039 |
[14] | A. Friedman, "Uniqueness of solutions of ordinary differential inequalities in Hilbert space" Arch. Rat. Mech. Anal. , 17 : 5 (1964) pp. 353–357 MR0171181 Zbl 0143.16701 |
[15] | T. Kato, "Linear evolution equations of "hyperbolic" type II" J. Math. Assoc. Japan , 25 : 4 (1973) pp. 648–666 MR0326483 Zbl 0262.34048 |
[16] | F. Trèves, "Basic linear partial differential equations" , Acad. Press (1975) MR0447753 Zbl 0305.35001 |
[17] | J. Miller, "Solution in Banach algebras of differential equations with irregular singular point" Acta Math. , 110 : 3–4 (1963) pp. 209–231 MR0153939 Zbl 0122.35303 |