Difference between revisions of "Hilbert kernel"
From Encyclopedia of Mathematics
(Importing text file) |
(details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0473001.png | ||
+ | $#A+1 = 4 n = 0 | ||
+ | $#C+1 = 4 : ~/encyclopedia/old_files/data/H047/H.0407300 Hilbert kernel | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | The | + | The kernel of the [[Hilbert singular integral]], i.e. the function |
− | + | $$ | |
+ | \mathop{\rm cotan} { | ||
+ | \frac{x - s }{2} | ||
+ | } ,\ \ | ||
+ | 0 \leq x, s \leq 2 \pi . | ||
+ | $$ | ||
− | + | The following simple relation holds between the Hilbert kernel and the [[Cauchy kernel|Cauchy kernel]] in the case of the unit circle: | |
+ | $$ | ||
+ | \frac{dt }{t - \tau } | ||
+ | = { | ||
+ | \frac{1}{2} | ||
+ | } | ||
+ | \left ( \mathop{\rm cotan} { | ||
+ | \frac{x - s }{2} | ||
+ | } + i \right ) dx, | ||
+ | $$ | ||
− | == | + | where $ t = e ^ {ix} $, |
+ | $ \tau = e ^ {is} $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.L. Moiseiwitsch, "Integral equations" , Longman (1977)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B.L. Moiseiwitsch, "Integral equations" , Longman (1977)</TD></TR> | ||
+ | </table> |
Latest revision as of 20:27, 18 March 2024
The kernel of the Hilbert singular integral, i.e. the function
$$ \mathop{\rm cotan} { \frac{x - s }{2} } ,\ \ 0 \leq x, s \leq 2 \pi . $$
The following simple relation holds between the Hilbert kernel and the Cauchy kernel in the case of the unit circle:
$$ \frac{dt }{t - \tau } = { \frac{1}{2} } \left ( \mathop{\rm cotan} { \frac{x - s }{2} } + i \right ) dx, $$
where $ t = e ^ {ix} $, $ \tau = e ^ {is} $.
References
[a1] | B.L. Moiseiwitsch, "Integral equations" , Longman (1977) |
How to Cite This Entry:
Hilbert kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_kernel&oldid=18062
Hilbert kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_kernel&oldid=18062
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article