|
|
(2 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''module of Kähler derivations''
| + | <!-- |
| + | d0312501.png |
| + | $#A+1 = 84 n = 0 |
| + | $#C+1 = 84 : ~/encyclopedia/old_files/data/D031/D.0301250 Derivations, module of, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | An algebraic analogue of the concept of the differential of a function. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312501.png" /> be a commutative ring regarded as an algebra over a subring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312502.png" /> of it. The module of derivations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312503.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312504.png" /> is defined as the quotient module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312505.png" /> of the free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312506.png" />-module with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312507.png" /> by the submodule generated by the elements of the type
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312508.png" /></td> </tr></table>
| + | ''module of Kähler derivations'' |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d0312509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125010.png" />. The canonical homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125011.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125012.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125013.png" />-derivation in the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125014.png" /> (cf. [[Derivation in a ring|Derivation in a ring]]) with values in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125015.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125016.png" /> having the following universality property: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125017.png" />-derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125018.png" /> with values in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125019.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125020.png" /> there exists a uniquely defined homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125021.png" />-modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125022.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125023.png" />. The correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125024.png" /> defines an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125025.png" />-modules:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125026.png" /></td> </tr></table>
| |
| | | |
− | In particular, the module of derivations of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125027.png" /> into itself is isomorphic to the dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125028.png" />-module to the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125029.png" />.
| + | An algebraic analogue of the concept of the differential of a function. Let $ A $ |
| + | be a commutative ring regarded as an algebra over a subring $ B $ |
| + | of it. The module of derivations of the $ B $- |
| + | algebra $ A $ |
| + | is defined as the quotient module $ \Omega _ {A/B} ^ {1} $ |
| + | of the free $ A $- |
| + | module with basis $ ( dx ) _ {x \in A } $ |
| + | by the submodule generated by the elements of the type |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125030.png" /> is regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125031.png" />-algebra with respect to the homomorphism
| + | $$ |
| + | d ( x + y ) - dx - dy ,\ d ( xy ) - x dy - y dx,\ db , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125032.png" /></td> </tr></table>
| + | where $ x, y \in A $, |
| + | $ b \in B $. |
| + | The canonical homomorphism of $ A $- |
| + | modules $ d: A \rightarrow \Omega _ {A/B} ^ {1} $ |
| + | is a $ B $- |
| + | derivation in the ring $ A $( |
| + | cf. [[Derivation in a ring|Derivation in a ring]]) with values in the $ A $- |
| + | module $ \Omega _ {A/B} ^ {1} $ |
| + | having the following universality property: For any $ B $- |
| + | derivation $ \partial : A \rightarrow M $ |
| + | with values in an $ A $- |
| + | module $ M $ |
| + | there exists a uniquely defined homomorphism of $ A $- |
| + | modules $ \overline \partial \; : \Omega _ {A/B} ^ {1} \rightarrow M $ |
| + | such that $ \overline \partial \; \circ d = \partial $. |
| + | The correspondence $ \partial \rightarrow \overline \partial \; $ |
| + | defines an isomorphism of $ A $- |
| + | modules: |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125033.png" /> is the ideal generated by the elements of the type
| + | $$ |
| + | \mathop{\rm Der} _ {B} ( A , M) \simeq \mathop{\rm Hom} _ {A} ( \Omega _ {A/B} ^ {1} , M). |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125034.png" /></td> </tr></table>
| + | In particular, the module of derivations of a ring $ A $ |
| + | into itself is isomorphic to the dual $ A $- |
| + | module to the module $ \Omega _ {A/B} ^ {1} $. |
| | | |
− | then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125035.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125036.png" /> is isomorphic to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125037.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125038.png" />.
| + | If $ A \otimes _ {B} A $ |
| + | is regarded as an $ A $- |
| + | algebra with respect to the homomorphism |
| | | |
− | The module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125039.png" /> of derivations has the following properties:
| + | $$ |
| + | A \rightarrow A \otimes _ {B} A \ ( a \rightarrow a \otimes 1 ) |
| + | $$ |
| | | |
− | 1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125040.png" /> is a multiplicatively closed set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125042.png" />, then there is a canonical localization isomorphism:
| + | and $ I $ |
| + | is the ideal generated by the elements of the type |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125043.png" /></td> </tr></table>
| + | $$ |
| + | a \otimes 1 - 1 \otimes a , |
| + | $$ |
| | | |
− | 2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125044.png" /> is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125045.png" />-algebras, then there is a canonical exact sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125046.png" />-modules:
| + | then the $ A $- |
| + | module $ \Omega _ {A/B} ^ {1} $ |
| + | is isomorphic to the $ A $- |
| + | module $ I / I ^ {2} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125047.png" /></td> </tr></table>
| + | The module $ \Omega ^ {1} $ |
| + | of derivations has the following properties: |
| | | |
− | 3) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125048.png" /> is an ideal of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125050.png" />, then there is an exact canonical sequence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125051.png" />-modules:
| + | 1) If $ S $ |
| + | is a multiplicatively closed set in $ A $ |
| + | and $ T = S \cap B $, |
| + | then there is a canonical localization isomorphism: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125052.png" /></td> </tr></table>
| + | $$ |
| + | ( \Omega _ {A/B} ^ {1} ) _ {S} \simeq \Omega _ {A _ {S} / B _ {T} } ^ {1} . |
| + | $$ |
| | | |
− | where the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125053.png" /> is induced by the derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125054.png" />.
| + | 2) If $ \phi : A \rightarrow A _ {1} $ |
| + | is a homomorphism of $ B $- |
| + | algebras, then there is a canonical exact sequence of $ A _ {1} $- |
| + | modules: |
| | | |
− | 4) A field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125055.png" /> is a separable extension of a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125056.png" /> of finite transcendence degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125057.png" /> if and only if there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125058.png" />-space isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125059.png" />.
| + | $$ |
| + | \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \mathop \rightarrow \limits ^ \alpha \Omega _ {A _ {1} / B } ^ {1} \rightarrow \Omega _ {A _ {1} / A } \rightarrow 0 . |
| + | $$ |
| | | |
− | 5) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125060.png" /> is an algebra of polynomials, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125061.png" /> is a free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125062.png" />-module with as basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125063.png" />.
| + | 3) If $ I $ |
| + | is an ideal of the ring $ A $ |
| + | and $ A _ {1} = A/I $, |
| + | then there is an exact canonical sequence of $ A _ {1} $- |
| + | modules: |
| | | |
− | 6) An algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125064.png" /> of finite type over a perfect field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125065.png" /> is a regular ring if and only if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125066.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125067.png" /> is projective.
| + | $$ |
| + | I / I ^ {2} \rightarrow ^ { {d _ 1} } \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \rightarrow \ |
| + | \Omega _ {A _ {1} / B } ^ {1} \rightarrow 0 , |
| + | $$ |
| | | |
− | 7) Concerning 2) above, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125068.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125069.png" /> of finite type is smooth over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125070.png" /> if and only if the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125071.png" /> is injective while the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125072.png" /> of derivations is projective and its rank is equal to the relative dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125073.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125074.png" />.
| + | where the homomorphism $ d _ {1} $ |
| + | is induced by the derivation $ d: A \rightarrow \Omega _ {A/B} ^ {1} $. |
| | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125075.png" />-th exterior power <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125076.png" /> of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125077.png" /> of derivations is said to be the module of (differential) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125081.png" />-forms of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125082.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125083.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125084.png" />.
| + | 4) A field $ K $ |
| + | is a separable extension of a field $ k $ |
| + | of finite transcendence degree $ n $ |
| + | if and only if there is a $ K $- |
| + | space isomorphism $ \Omega _ {K/k} ^ {1} \simeq K ^ {n} $. |
| | | |
− | By virtue of 1) it is possible to define, for any morphism of schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125085.png" />, the sheaf of relative (or Kähler) derivations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125086.png" /> and its exterior powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031250/d03125087.png" />.
| + | 5) If $ A = B [ T _ {1} \dots T _ {n} ] $ |
− | | + | is an algebra of polynomials, then $ \Omega _ {A/B} ^ {1} $ |
− | ====References====
| + | is a free $ A $- |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémes et des morphismes de schémes" ''Publ. Math. IHES'' , '''20''' (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> E. Kähler, "Algebra und Differentialrechnung" , Deutsch. Verlag Wissenschaft. (1958)</TD></TR></table>
| + | module with as basis $ dT _ {1} \dots dT _ {n} $. |
| | | |
| + | 6) An algebra $ A $ |
| + | of finite type over a perfect field $ k $ |
| + | is a regular ring if and only if the $ A $- |
| + | module $ \Omega _ {A/k} ^ {1} $ |
| + | is projective. |
| | | |
| + | 7) Concerning 2) above, the $ A $- |
| + | algebra $ A _ {1} $ |
| + | of finite type is smooth over $ A $ |
| + | if and only if the homomorphism $ \alpha $ |
| + | is injective while the module $ \Omega _ {A _ {1} / A } ^ {1} $ |
| + | of derivations is projective and its rank is equal to the relative dimension of $ A _ {1} $ |
| + | over $ A $. |
| | | |
− | ====Comments====
| + | The $ i $- |
| + | th exterior power $ \wedge ^ {i} \Omega _ {A/B} ^ {1} $ |
| + | of the module $ \Omega _ {A/B} ^ {1} $ |
| + | of derivations is said to be the module of (differential) $ i $- |
| + | forms of the $ B $- |
| + | algebra $ A $ |
| + | and is denoted by $ \Omega _ {A/B} ^ {i} $. |
| | | |
| + | By virtue of 1) it is possible to define, for any morphism of schemes $ X \rightarrow Y $, |
| + | the sheaf of relative (or Kähler) derivations $ \Omega _ {X/Y} ^ {1} $ |
| + | and its exterior powers $ \Omega _ {X/Y} ^ {i} $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> A. Grothendieck (ed.) et al. (ed.) , ''Revêtements étales et groupe fondamental. SGA 1'' , ''Lect. notes in math.'' , '''224''' , Springer (1971) {{MR|0354651}} {{ZBL|1039.14001}} </TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémas et des morphismes de schémas" ''Publ. Math. IHES'' , '''20''' (1964) {{MR|0173675}} {{ZBL|}} </TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> E. Kähler, "Algebra und Differentialrechnung" , Deutsch. Verlag Wissenschaft. (1958) {{MR|0094593}} {{ZBL|0079.05701}} </TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR> |
| + | </table> |
module of Kähler derivations
An algebraic analogue of the concept of the differential of a function. Let $ A $
be a commutative ring regarded as an algebra over a subring $ B $
of it. The module of derivations of the $ B $-
algebra $ A $
is defined as the quotient module $ \Omega _ {A/B} ^ {1} $
of the free $ A $-
module with basis $ ( dx ) _ {x \in A } $
by the submodule generated by the elements of the type
$$
d ( x + y ) - dx - dy ,\ d ( xy ) - x dy - y dx,\ db ,
$$
where $ x, y \in A $,
$ b \in B $.
The canonical homomorphism of $ A $-
modules $ d: A \rightarrow \Omega _ {A/B} ^ {1} $
is a $ B $-
derivation in the ring $ A $(
cf. Derivation in a ring) with values in the $ A $-
module $ \Omega _ {A/B} ^ {1} $
having the following universality property: For any $ B $-
derivation $ \partial : A \rightarrow M $
with values in an $ A $-
module $ M $
there exists a uniquely defined homomorphism of $ A $-
modules $ \overline \partial \; : \Omega _ {A/B} ^ {1} \rightarrow M $
such that $ \overline \partial \; \circ d = \partial $.
The correspondence $ \partial \rightarrow \overline \partial \; $
defines an isomorphism of $ A $-
modules:
$$
\mathop{\rm Der} _ {B} ( A , M) \simeq \mathop{\rm Hom} _ {A} ( \Omega _ {A/B} ^ {1} , M).
$$
In particular, the module of derivations of a ring $ A $
into itself is isomorphic to the dual $ A $-
module to the module $ \Omega _ {A/B} ^ {1} $.
If $ A \otimes _ {B} A $
is regarded as an $ A $-
algebra with respect to the homomorphism
$$
A \rightarrow A \otimes _ {B} A \ ( a \rightarrow a \otimes 1 )
$$
and $ I $
is the ideal generated by the elements of the type
$$
a \otimes 1 - 1 \otimes a ,
$$
then the $ A $-
module $ \Omega _ {A/B} ^ {1} $
is isomorphic to the $ A $-
module $ I / I ^ {2} $.
The module $ \Omega ^ {1} $
of derivations has the following properties:
1) If $ S $
is a multiplicatively closed set in $ A $
and $ T = S \cap B $,
then there is a canonical localization isomorphism:
$$
( \Omega _ {A/B} ^ {1} ) _ {S} \simeq \Omega _ {A _ {S} / B _ {T} } ^ {1} .
$$
2) If $ \phi : A \rightarrow A _ {1} $
is a homomorphism of $ B $-
algebras, then there is a canonical exact sequence of $ A _ {1} $-
modules:
$$
\Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \mathop \rightarrow \limits ^ \alpha \Omega _ {A _ {1} / B } ^ {1} \rightarrow \Omega _ {A _ {1} / A } \rightarrow 0 .
$$
3) If $ I $
is an ideal of the ring $ A $
and $ A _ {1} = A/I $,
then there is an exact canonical sequence of $ A _ {1} $-
modules:
$$
I / I ^ {2} \rightarrow ^ { {d _ 1} } \Omega _ {A/B} ^ {1} \otimes _ { A } A _ {1} \rightarrow \
\Omega _ {A _ {1} / B } ^ {1} \rightarrow 0 ,
$$
where the homomorphism $ d _ {1} $
is induced by the derivation $ d: A \rightarrow \Omega _ {A/B} ^ {1} $.
4) A field $ K $
is a separable extension of a field $ k $
of finite transcendence degree $ n $
if and only if there is a $ K $-
space isomorphism $ \Omega _ {K/k} ^ {1} \simeq K ^ {n} $.
5) If $ A = B [ T _ {1} \dots T _ {n} ] $
is an algebra of polynomials, then $ \Omega _ {A/B} ^ {1} $
is a free $ A $-
module with as basis $ dT _ {1} \dots dT _ {n} $.
6) An algebra $ A $
of finite type over a perfect field $ k $
is a regular ring if and only if the $ A $-
module $ \Omega _ {A/k} ^ {1} $
is projective.
7) Concerning 2) above, the $ A $-
algebra $ A _ {1} $
of finite type is smooth over $ A $
if and only if the homomorphism $ \alpha $
is injective while the module $ \Omega _ {A _ {1} / A } ^ {1} $
of derivations is projective and its rank is equal to the relative dimension of $ A _ {1} $
over $ A $.
The $ i $-
th exterior power $ \wedge ^ {i} \Omega _ {A/B} ^ {1} $
of the module $ \Omega _ {A/B} ^ {1} $
of derivations is said to be the module of (differential) $ i $-
forms of the $ B $-
algebra $ A $
and is denoted by $ \Omega _ {A/B} ^ {i} $.
By virtue of 1) it is possible to define, for any morphism of schemes $ X \rightarrow Y $,
the sheaf of relative (or Kähler) derivations $ \Omega _ {X/Y} ^ {1} $
and its exterior powers $ \Omega _ {X/Y} ^ {i} $.
References
[1] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
[2] | A. Grothendieck (ed.) et al. (ed.) , Revêtements étales et groupe fondamental. SGA 1 , Lect. notes in math. , 224 , Springer (1971) MR0354651 Zbl 1039.14001 |
[3] | A. Grothendieck, "Eléments de géométrie algébrique IV. Etude locale des schémas et des morphismes de schémas" Publ. Math. IHES , 20 (1964) MR0173675 |
[4] | E. Kähler, "Algebra und Differentialrechnung" , Deutsch. Verlag Wissenschaft. (1958) MR0094593 Zbl 0079.05701 |
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |