Difference between revisions of "Bicomplex"
(Importing text file) |
(details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b0160801.png | ||
+ | $#A+1 = 8 n = 0 | ||
+ | $#C+1 = 8 : ~/encyclopedia/old_files/data/B016/B.0106080 Bicomplex, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''binary complex, double complex'' | ''binary complex, double complex'' | ||
− | A graded module, i.e. one representable as the direct sum | + | A graded module, i.e. one representable as the direct sum $ \sum A ^ {m,n} $ |
+ | of its submodules $ A ^ {m,n} $, | ||
+ | together with a pair of differentials | ||
− | + | $$ | |
+ | d _ {1} : A ^ {m,n} \rightarrow A ^ {m+1,n} , | ||
+ | $$ | ||
− | + | $$ | |
+ | d _ {2} : A ^ {m,n} \rightarrow A ^ {m,n+1} , | ||
+ | $$ | ||
which satisfy the conditions | which satisfy the conditions | ||
− | + | $$ | |
+ | d _ {1} \cdot d _ {1} = 0,\ \ | ||
+ | d _ {2} \cdot d _ {2} = 0 ,\ \ | ||
+ | d _ {2} d _ {1} +d _ {1} d _ {2} = 0 . | ||
+ | $$ | ||
− | Instead of the direct sum, the set | + | Instead of the direct sum, the set $ \{ A ^ {m,n} \} $ |
+ | and the differentials | ||
− | + | $$ | |
+ | d _ {1} : A ^ {m, n } \rightarrow A ^ {m - 1, n } , | ||
+ | $$ | ||
− | + | $$ | |
+ | d _ {2} : A ^ {m, n } \rightarrow A ^ {m, n - 1 } , | ||
+ | $$ | ||
satisfying the above conditions, may be considered. | satisfying the above conditions, may be considered. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. MacLane, "Homology" , Springer (1963)</TD></TR></table> |
Latest revision as of 05:49, 26 April 2023
binary complex, double complex
A graded module, i.e. one representable as the direct sum $ \sum A ^ {m,n} $ of its submodules $ A ^ {m,n} $, together with a pair of differentials
$$ d _ {1} : A ^ {m,n} \rightarrow A ^ {m+1,n} , $$
$$ d _ {2} : A ^ {m,n} \rightarrow A ^ {m,n+1} , $$
which satisfy the conditions
$$ d _ {1} \cdot d _ {1} = 0,\ \ d _ {2} \cdot d _ {2} = 0 ,\ \ d _ {2} d _ {1} +d _ {1} d _ {2} = 0 . $$
Instead of the direct sum, the set $ \{ A ^ {m,n} \} $ and the differentials
$$ d _ {1} : A ^ {m, n } \rightarrow A ^ {m - 1, n } , $$
$$ d _ {2} : A ^ {m, n } \rightarrow A ^ {m, n - 1 } , $$
satisfying the above conditions, may be considered.
References
[a1] | S. MacLane, "Homology" , Springer (1963) |
Bicomplex. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bicomplex&oldid=18032