Difference between revisions of "Orthogonal array"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0702701.png | ||
+ | $#A+1 = 28 n = 0 | ||
+ | $#C+1 = 28 : ~/encyclopedia/old_files/data/O070/O.0700270 Orthogonal array, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | A | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | ''orthogonal table, $ \mathop{\rm OA} ( N, k, n, t, \lambda ) $'' | ||
+ | |||
+ | A $ ( k \times N) $- | ||
+ | dimensional [[Matrix|matrix]] whose entries are the numbers $ 1 \dots n $, | ||
+ | and possessing the property that in each of its $ ( t \times N) $- | ||
+ | dimensional submatrices any of the $ n ^ {t} $ | ||
+ | possible $ t $- | ||
+ | dimensional vector-columns with these numbers as coordinates is found in the columns of this submatrix precisely $ \lambda $ | ||
+ | times. The definition of an orthogonal array implies that $ N = \lambda n ^ {t} $. | ||
+ | One often considers the special case $ \mathop{\rm OA} ( N, k, n, t, \lambda ) $ | ||
+ | with $ t = 2 $ | ||
+ | and $ \lambda = 1 $, | ||
+ | which is then denoted by $ \mathop{\rm OA} ( n, k) $. | ||
+ | When $ k > 3 $, | ||
+ | an orthogonal array $ \mathop{\rm OA} ( n, k) $ | ||
+ | is equivalent to a set of $ k- 2 $ | ||
+ | pairwise [[Orthogonal Latin squares|orthogonal Latin squares]]. For given $ n, t, \lambda $, | ||
+ | the maximum value of the parameter $ k $ | ||
+ | has been determined only in a number of specific cases, such as, for example, $ k \leq ( \lambda n ^ {2} - 1)/( n- 1) $ | ||
+ | when $ t = 2 $, | ||
+ | or $ k _ \max = t+ 1 $ | ||
+ | when $ \lambda $ | ||
+ | is odd and $ n = 2 $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Dénes, A.D. Keedwell, "Latin squares and their applications" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Wiley (1986)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Dénes, A.D. Keedwell, "Latin squares and their applications" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M. Hall, "Combinatorial theory" , Wiley (1986)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | Regarding existence, the only general result for | + | Regarding existence, the only general result for $ t= 2 $ |
+ | and $ \lambda \neq 1 $ | ||
+ | states the existence of $ \mathop{\rm OA} ( \lambda n ^ {2} , 7 , n, 2, \lambda ) $ | ||
+ | for all $ n \geq 2 $( | ||
+ | H. Hanani, cf. [[#References|[a1]]]). For $ \lambda = 1 $, | ||
+ | see [[Orthogonal Latin squares|Orthogonal Latin squares]]. In geometric terms, an $ \mathop{\rm OA} ( \lambda n ^ {2} , k, n, 2, \lambda ) $ | ||
+ | is equivalent to a "transversal designtransversal design" , respectively a "netnet" ; cf. [[#References|[a1]]] for some fundamental results and [[#References|[a2]]] for a recent survey. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Jungnickel, "Latin squares, their geometries and their groups. A survey" , ''Proc. IMA Workshops on Coding and Design Theory Minneapolis, 1988'' , Springer (to appear)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Jungnickel, "Latin squares, their geometries and their groups. A survey" , ''Proc. IMA Workshops on Coding and Design Theory Minneapolis, 1988'' , Springer (to appear)</TD></TR></table> |
Latest revision as of 08:04, 6 June 2020
orthogonal table, $ \mathop{\rm OA} ( N, k, n, t, \lambda ) $
A $ ( k \times N) $- dimensional matrix whose entries are the numbers $ 1 \dots n $, and possessing the property that in each of its $ ( t \times N) $- dimensional submatrices any of the $ n ^ {t} $ possible $ t $- dimensional vector-columns with these numbers as coordinates is found in the columns of this submatrix precisely $ \lambda $ times. The definition of an orthogonal array implies that $ N = \lambda n ^ {t} $. One often considers the special case $ \mathop{\rm OA} ( N, k, n, t, \lambda ) $ with $ t = 2 $ and $ \lambda = 1 $, which is then denoted by $ \mathop{\rm OA} ( n, k) $. When $ k > 3 $, an orthogonal array $ \mathop{\rm OA} ( n, k) $ is equivalent to a set of $ k- 2 $ pairwise orthogonal Latin squares. For given $ n, t, \lambda $, the maximum value of the parameter $ k $ has been determined only in a number of specific cases, such as, for example, $ k \leq ( \lambda n ^ {2} - 1)/( n- 1) $ when $ t = 2 $, or $ k _ \max = t+ 1 $ when $ \lambda $ is odd and $ n = 2 $.
References
[1] | J. Dénes, A.D. Keedwell, "Latin squares and their applications" , Acad. Press (1974) |
[2] | M. Hall, "Combinatorial theory" , Wiley (1986) |
Comments
Regarding existence, the only general result for $ t= 2 $ and $ \lambda \neq 1 $ states the existence of $ \mathop{\rm OA} ( \lambda n ^ {2} , 7 , n, 2, \lambda ) $ for all $ n \geq 2 $( H. Hanani, cf. [a1]). For $ \lambda = 1 $, see Orthogonal Latin squares. In geometric terms, an $ \mathop{\rm OA} ( \lambda n ^ {2} , k, n, 2, \lambda ) $ is equivalent to a "transversal designtransversal design" , respectively a "netnet" ; cf. [a1] for some fundamental results and [a2] for a recent survey.
References
[a1] | T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986) |
[a2] | D. Jungnickel, "Latin squares, their geometries and their groups. A survey" , Proc. IMA Workshops on Coding and Design Theory Minneapolis, 1988 , Springer (to appear) |
Orthogonal array. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonal_array&oldid=17901