|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | Ordinary differential equations which describe the motions of both holonomic and non-holonomic systems, established by P.E. Appell [[#References|[1]]]. They are sometimes referred to as Gibbs–Appell equations, since they were first proposed by J.W. Gibbs [[#References|[3]]] for holonomic systems. The Appell equations in independent Lagrange coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127901.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127902.png" />) have the form of second-order equations
| + | <!-- |
| + | a0127901.png |
| + | $#A+1 = 49 n = 0 |
| + | $#C+1 = 49 : ~/encyclopedia/old_files/data/A012/A.0102790 Appell equations |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127903.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Here
| + | Ordinary differential equations which describe the motions of both holonomic and non-holonomic systems, established by P.E. Appell [[#References|[1]]]. They are sometimes referred to as Gibbs–Appell equations, since they were first proposed by J.W. Gibbs [[#References|[3]]] for holonomic systems. The Appell equations in independent Lagrange coordinates $ q _ {s} $( |
| + | $ s =1 \dots n $) |
| + | have the form of second-order equations |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127904.png" /></td> </tr></table>
| + | $$ \tag{1 } |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127905.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127906.png" /> are the masses and the accelerations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127907.png" /> points of the system) is the energy of acceleration of the system, which is so expressed that it contains the second derivatives of the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127908.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a0127909.png" />, only, the variations of which are considered as independent; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279010.png" /> are the generalized forces corresponding to the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279011.png" />, obtained as coefficients in front of the independent variations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279012.png" /> in the expression for the work of the given active forces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279013.png" /> corresponding to virtual displacements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279014.png" />:
| + | \frac{\partial S }{\partial \dot{q} dot _ {i} } |
| + | = Q _ {i} ^ {*} ,\ \ |
| + | i = 1 \dots k \leq n . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279015.png" /></td> </tr></table>
| + | Here |
| | | |
− | In evaluating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279017.png" /> the dependent variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279018.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279019.png" />) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279020.png" /> are expressed in terms of the independent velocities (variations) by solving the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279021.png" /> non-holonomic constraint equations (cf. [[Non-holonomic systems|Non-holonomic systems]]), expressed in the generalized coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279022.png" /> (and by solving the equations for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279023.png" /> obtained from them). Differentiation with respect to the time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279024.png" /> of the expressions found for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279025.png" /> yields expressions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279026.png" /> in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279027.png" />.
| + | $$ |
| + | S = |
| + | \frac{1}{2} |
| + | \sum _ {\nu = 1 } ^ { N } |
| + | m _ \nu w _ \nu ^ {2} |
| + | $$ |
| | | |
− | Equations (1), together with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279028.png" /> equations of the non-integrable constraints, form a system (of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279029.png" />) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279030.png" /> differential equations involving the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279031.png" /> unknowns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279032.png" />.
| + | ( $ m _ \nu $ |
| + | and $ w _ \nu $ |
| + | are the masses and the accelerations of the $ N $ |
| + | points of the system) is the energy of acceleration of the system, which is so expressed that it contains the second derivatives of the coordinates $ q _ {i} $, |
| + | $ i = 1 \dots k $, |
| + | only, the variations of which are considered as independent; $ Q _ {i} ^ {*} $ |
| + | are the generalized forces corresponding to the coordinates $ q _ {i} $, |
| + | obtained as coefficients in front of the independent variations $ \delta q _ {i} $ |
| + | in the expression for the work of the given active forces $ F _ \nu $ |
| + | corresponding to virtual displacements $ \delta r _ \nu $: |
| | | |
− | For a holonomic system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279033.png" />, all velocities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279034.png" /> and variations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279035.png" /> are independent, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279036.png" />, and equations (1) are a different notation for the [[Lagrange equations (in mechanics)|Lagrange equations (in mechanics)]]) of the second kind.
| + | $$ |
| + | \sum _ {\nu = 1 } ^ { N } |
| + | F _ \nu \delta r _ \nu = \sum _ {i = 1 } ^ { k } |
| + | Q _ {1} ^ {*} \delta q _ {i} . |
| + | $$ |
| | | |
− | Appell's equations in quasi-coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279037.png" />, where
| + | In evaluating $ S $ |
| + | and $ Q _ {i} ^ {*} $ |
| + | the dependent variables $ \dot{q} _ {j} $( |
| + | $ \delta q _ {j} $) |
| + | $ (j = k+1 \dots n) $ |
| + | are expressed in terms of the independent velocities (variations) by solving the $ n - k $ |
| + | non-holonomic constraint equations (cf. [[Non-holonomic systems|Non-holonomic systems]]), expressed in the generalized coordinates $ q _ {s} $( |
| + | and by solving the equations for $ \delta q _ {s} $ |
| + | obtained from them). Differentiation with respect to the time $ t $ |
| + | of the expressions found for $ \dot{q} _ {j} $ |
| + | yields expressions for $ \dot{q} dot _ {j} $ |
| + | in terms of $ \dot{q} dot _ {i} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279038.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | Equations (1), together with the $ n - k $ |
| + | equations of the non-integrable constraints, form a system (of order $ n + k $) |
| + | of $ n $ |
| + | differential equations involving the $ n $ |
| + | unknowns $ q _ {s} $. |
| | | |
− | have the form
| + | For a holonomic system $ k = n $, |
| + | all velocities $ q _ {s} $ |
| + | and variations $ \delta q _ {s} $ |
| + | are independent, $ Q _ {i} ^ {*} = Q _ {i} $, |
| + | and equations (1) are a different notation for the [[Lagrange equations (in mechanics)|Lagrange equations (in mechanics)]]) of the second kind. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | Appell's equations in quasi-coordinates $ \pi _ {r} $, |
| + | where |
| | | |
− | Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279040.png" /> is the energy of acceleration, expressed in terms of the second "derivatives" <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279041.png" /> (with respect to the time) of the quasi-coordinates, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279042.png" /> are the generalized forces corresponding to the quasi-coordinates. Equations (3), together with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279043.png" /> equations of the non-integrable constraints and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279044.png" /> equations (2), form a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279045.png" /> differential equations of the first order with the same number of unknowns <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279047.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a012/a012790/a01279049.png" />.
| + | $$ \tag{2 } |
| + | \dot \pi _ {r} = \sum _ {i = 1 } ^ { n } |
| + | a _ {r _ {i} } \dot{q} _ {i} ,\ \ |
| + | r = 1 \dots k, |
| + | $$ |
| | | |
− | Appell's equations are the most general equations of motion of mechanical systems.
| + | have the form |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.E. Appell, "Sur une forme génerale des équations de la dynamique" ''C.R. Acad. Sci. Paris Sér. I Math.'' , '''129''' (1899)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.E. Appell, "Sur une forme générale des équations de la dynamique et sur le principe de Gauss" ''J. Reine Angew. Math.'' , '''122''' (1900) pp. 205–208</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Gibbs, "On the fundamental formula of dynamics" ''Amer. J. Math.'' , '''2''' (1879) pp. 49–64</TD></TR></table>
| |
| | | |
| + | $$ \tag{3 } |
| | | |
| + | \frac{\partial S }{\partial \dot \pi dot _ {r} } |
| + | = \Pi _ {r} ,\ \ |
| + | r = 1 \dots k \leq n . |
| + | $$ |
| | | |
− | ====Comments==== | + | Here $ S $ |
| + | is the energy of acceleration, expressed in terms of the second "derivatives" $ \dot \pi dot _ {r} $( |
| + | with respect to the time) of the quasi-coordinates, and $ \Pi _ {r} $ |
| + | are the generalized forces corresponding to the quasi-coordinates. Equations (3), together with the $ n - k $ |
| + | equations of the non-integrable constraints and the $ k $ |
| + | equations (2), form a system of $ n + k $ |
| + | differential equations of the first order with the same number of unknowns $ q _ {s} $, |
| + | $ s = 1 \dots n $, |
| + | and $ \dot \pi _ {r} $, |
| + | $ r = 1 \dots k $. |
| | | |
| + | Appell's equations are the most general equations of motion of mechanical systems. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.T. Whittaker, "Analytical dynamics" , Cambridge Univ. Press (1927) pp. 258</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.E. Appell, "Sur une forme générale des équations de la dynamique" ''C.R. Acad. Sci. Paris Sér. I Math.'' , '''129''' (1899) {{ZBL|30.0641.02}}</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.E. Appell, "Sur une forme générale des équations de la dynamique et sur le principe de Gauss" ''J. Reine Angew. Math.'' , '''122''' (1900) pp. 205–208 {{ZBL|31.0692.02}}</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> J.W. Gibbs, "On the fundamental formula of dynamics" ''Amer. J. Math.'' , '''2''' (1879) pp. 49–64</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.T. Whittaker, "Analytical dynamics" , Cambridge Univ. Press (1927) pp. 258</TD></TR> |
| + | </table> |
Ordinary differential equations which describe the motions of both holonomic and non-holonomic systems, established by P.E. Appell [1]. They are sometimes referred to as Gibbs–Appell equations, since they were first proposed by J.W. Gibbs [3] for holonomic systems. The Appell equations in independent Lagrange coordinates $ q _ {s} $(
$ s =1 \dots n $)
have the form of second-order equations
$$ \tag{1 }
\frac{\partial S }{\partial \dot{q} dot _ {i} }
= Q _ {i} ^ {*} ,\ \
i = 1 \dots k \leq n .
$$
Here
$$
S =
\frac{1}{2}
\sum _ {\nu = 1 } ^ { N }
m _ \nu w _ \nu ^ {2}
$$
( $ m _ \nu $
and $ w _ \nu $
are the masses and the accelerations of the $ N $
points of the system) is the energy of acceleration of the system, which is so expressed that it contains the second derivatives of the coordinates $ q _ {i} $,
$ i = 1 \dots k $,
only, the variations of which are considered as independent; $ Q _ {i} ^ {*} $
are the generalized forces corresponding to the coordinates $ q _ {i} $,
obtained as coefficients in front of the independent variations $ \delta q _ {i} $
in the expression for the work of the given active forces $ F _ \nu $
corresponding to virtual displacements $ \delta r _ \nu $:
$$
\sum _ {\nu = 1 } ^ { N }
F _ \nu \delta r _ \nu = \sum _ {i = 1 } ^ { k }
Q _ {1} ^ {*} \delta q _ {i} .
$$
In evaluating $ S $
and $ Q _ {i} ^ {*} $
the dependent variables $ \dot{q} _ {j} $(
$ \delta q _ {j} $)
$ (j = k+1 \dots n) $
are expressed in terms of the independent velocities (variations) by solving the $ n - k $
non-holonomic constraint equations (cf. Non-holonomic systems), expressed in the generalized coordinates $ q _ {s} $(
and by solving the equations for $ \delta q _ {s} $
obtained from them). Differentiation with respect to the time $ t $
of the expressions found for $ \dot{q} _ {j} $
yields expressions for $ \dot{q} dot _ {j} $
in terms of $ \dot{q} dot _ {i} $.
Equations (1), together with the $ n - k $
equations of the non-integrable constraints, form a system (of order $ n + k $)
of $ n $
differential equations involving the $ n $
unknowns $ q _ {s} $.
For a holonomic system $ k = n $,
all velocities $ q _ {s} $
and variations $ \delta q _ {s} $
are independent, $ Q _ {i} ^ {*} = Q _ {i} $,
and equations (1) are a different notation for the Lagrange equations (in mechanics)) of the second kind.
Appell's equations in quasi-coordinates $ \pi _ {r} $,
where
$$ \tag{2 }
\dot \pi _ {r} = \sum _ {i = 1 } ^ { n }
a _ {r _ {i} } \dot{q} _ {i} ,\ \
r = 1 \dots k,
$$
have the form
$$ \tag{3 }
\frac{\partial S }{\partial \dot \pi dot _ {r} }
= \Pi _ {r} ,\ \
r = 1 \dots k \leq n .
$$
Here $ S $
is the energy of acceleration, expressed in terms of the second "derivatives" $ \dot \pi dot _ {r} $(
with respect to the time) of the quasi-coordinates, and $ \Pi _ {r} $
are the generalized forces corresponding to the quasi-coordinates. Equations (3), together with the $ n - k $
equations of the non-integrable constraints and the $ k $
equations (2), form a system of $ n + k $
differential equations of the first order with the same number of unknowns $ q _ {s} $,
$ s = 1 \dots n $,
and $ \dot \pi _ {r} $,
$ r = 1 \dots k $.
Appell's equations are the most general equations of motion of mechanical systems.
References
[1] | P.E. Appell, "Sur une forme générale des équations de la dynamique" C.R. Acad. Sci. Paris Sér. I Math. , 129 (1899) Zbl 30.0641.02 |
[2] | P.E. Appell, "Sur une forme générale des équations de la dynamique et sur le principe de Gauss" J. Reine Angew. Math. , 122 (1900) pp. 205–208 Zbl 31.0692.02 |
[3] | J.W. Gibbs, "On the fundamental formula of dynamics" Amer. J. Math. , 2 (1879) pp. 49–64 |
[a1] | E.T. Whittaker, "Analytical dynamics" , Cambridge Univ. Press (1927) pp. 258 |