Namespaces
Variants
Actions

Difference between revisions of "Closed monoidal category"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: zbl link)
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
A [[Category|category]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301201.png" /> is monoidal if it consists of the following data:
+
A [[category]] $\mathcal{C}$ is monoidal if it consists of the following data:
  
1) a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301202.png" />;
+
1) a category $\mathcal{C}$;
  
2) a [[Bifunctor|bifunctor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301203.png" />;
+
2) a [[bifunctor]] $\otimes : \mathcal{C}\times\mathcal{C}\rightarrow\mathcal{C}$;
  
3) an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301204.png" />; and
+
3) an object $e\in\mathcal{C}$; and
  
4) three natural isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301206.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301207.png" /> such that
+
4) three natural isomorphisms $\alpha,\lambda,\rho$ such that
  
A1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301208.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c1301209.png" /> is natural for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012010.png" /> and the diagram
+
A1) $\alpha_{a,b,c} : a \otimes (b \otimes c) \cong (a \otimes b) \otimes c$ is natural for all $a,b,c \in \mathcal{C}$ and the diagram
 +
$$
 +
\begin{array}{ccccc}
 +
a \otimes (b \otimes (c \otimes d)) & \stackrel{\alpha}{\rightarrow} & (a \otimes b) \otimes (c \otimes d) &  \stackrel{\alpha}{\rightarrow} & ((a \otimes b) \otimes c) \otimes d \\
 +
          \downarrow\mathrm{id}\otimes\alpha & & & & \uparrow \alpha\otimes\mathrm{id} \\
 +
a \otimes ((b \otimes c) \otimes d) &  & \stackrel{\alpha}{\rightarrow} &  & (a \otimes (b \otimes c)) \otimes d
 +
\end{array}
 +
$$
 +
commutes for all $a,b,c,d \in \mathcal{C}$;
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012011.png" /></td> </tr></table>
+
A2) $\lambda$ and $\rho$ are natural and $\lambda : e \otimes a \cong a$, $\rho : a \otimes e \cong a$ for all objects $a \in \mathcal{C}$ and the diagram
 +
$$
 +
\begin{array}{ccc}
 +
a \otimes (e \otimes c) & \stackrel{\alpha}{\rightarrow} & (a \otimes e) \otimes c \\
 +
\downarrow\mathrm{id}\otimes\lambda & & \downarrow\rho\otimes\mathrm{id} \\
 +
a \otimes c & = & a \otimes c
 +
\end{array}
 +
$$
 +
commutes for all $a.c \in \mathcal{C}$;
  
commutes for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012012.png" />;
+
A3) $\lambda_e = \rho_e : e \otimes e \rightarrow e$.
 
 
A2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012014.png" /> are natural and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012015.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012017.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012018.png" /> for all objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012019.png" /> and the diagram
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012020.png" /></td> </tr></table>
 
 
 
commutes for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012021.png" />;
 
 
 
A3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012022.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012023.png" />.
 
  
 
These axioms imply that all such diagrams commute.
 
These axioms imply that all such diagrams commute.
Line 27: Line 35:
 
Some examples of monoidal categories are:
 
Some examples of monoidal categories are:
  
E1) any category with finite products is monoidal if one takes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012024.png" /> to be the (chosen) product of the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012026.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012027.png" /> the terminal object; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012030.png" /> are the unique isomorphisms that commute with the appropriate projections;
+
E1) any category with finite products is monoidal if one takes $a\otimes b$ to be the (chosen) product of the objects $a$ and $b$, with $e$ the [[terminal object]]; $\alpha,\lambda,\rho$ are the unique isomorphisms that commute with the appropriate projections;
  
E2) the usual  "tensor products"  give monoidal categories — whence the notation. Note that one cannot identify all isomorphic objects in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012031.png" />.
+
E2) the usual  "tensor products"  give monoidal categories — whence the notation. Note that one cannot identify all isomorphic objects in $\mathcal{C}$.
  
 
==Closed categories.==
 
==Closed categories.==
A monoidal category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012032.png" /> is said to be symmetric if it comes with isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012033.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012034.png" /> natural on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012035.png" /> such that the following diagrams all commute:
+
A monoidal category $\mathcal{C}$ is said to be ''symmetri''c if it comes with isomorphisms $\gamma_{a.b} : a \otimes b \cong b \otimes a$, natural on $a,b \in \mathcal{C}$ such that the following diagrams all commute:
 +
$$
 +
\gamma_{a,b} \circ \gamma_{b,a} = \mathrm{id}\,;
 +
$$
 +
$$
 +
\rho_b = \lambda_b \circ \gamma_{b,e} : b\otimes e \cong b\,;
 +
$$
 +
$$
 +
\begin{array}{ccccc}
 +
a \otimes (b \otimes c) & \stackrel{\alpha}{\rightarrow} & (a \otimes b) \otimes c & \stackrel{\gamma}{\rightarrow} & c \otimes (a \otimes b) \\
 +
\downarrow_{\mathrm{id}\otimes\gamma} & & & & \downarrow_\alpha \\
 +
a \otimes (c \otimes b) & \stackrel{\alpha}{\rightarrow} & (a \otimes c) \otimes b & \stackrel{\gamma\otimes\mathrm{id}}{\rightarrow} & (c \otimes a) \otimes b
 +
\end{array}
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012037.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012038.png" />:
+
A '''closed category''' $\mathcal{V}$ is a symmetric monoidal category in which each functor ${-}\otimes b: \mathcal{V} \rightarrow \mathcal{V}$ has a specified [[Adjoint functor|right-adjoint]] $({-})^b : \mathcal{V} \rightarrow \mathcal{V}$.
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012039.png" /></td> </tr></table>
 
 
 
A closed category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012040.png" /> is a symmetric monoidal category in which each functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012041.png" /> has a specified right-adjoint <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012042.png" />.
 
  
 
Some examples of closed monoidal categories are:
 
Some examples of closed monoidal categories are:
  
E3) the category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012043.png" /> of relations, whose objects are sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012044.png" /> and in which an arrow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012045.png" /> is a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012046.png" />; the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012047.png" /> is the Cartesian product of the two sets, which is not the product in this category;
+
E3) the category $\mathsf{Rel}$ of relations, whose objects are sets $a,b,c,\ldots$ and in which an arrow $\sigma:a\rightarrow b$ is a subset $\sigma \subseteq a \otimes b$, the object $a \otimes b$ being the [[Cartesian product]] of the two sets (which is not the product in this category);
  
E4) the subsets of a monoid <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012048.png" /> (a poset, hence a category); if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012050.png" /> are two subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012051.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012052.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012053.png" /> while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012054.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130120/c13012055.png" />.
+
E4) the subsets of a monoid $M$ (partially ordered by inclusion, hence a category); if $A$, $B$ are two subsets of $M$, then $A \otimes B$ is $\{ab : a \in A,\,b \in B\}$ while $C^A$ is $\{b \in M : ab\in C\ \text{for all}\ a \in A\}$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Barr,   C. Wells,   "Category theory for computing science" , CRM (1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. MacLane,   "Categories for the working mathematician" , Springer (1971)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Barr,C. Wells, "Category theory for computing science", CRM (1990) {{ZBL|0714.18001}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> S. MacLane, "Categories for the working mathematician", Springer (1971)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 14:59, 6 April 2023

A category $\mathcal{C}$ is monoidal if it consists of the following data:

1) a category $\mathcal{C}$;

2) a bifunctor $\otimes : \mathcal{C}\times\mathcal{C}\rightarrow\mathcal{C}$;

3) an object $e\in\mathcal{C}$; and

4) three natural isomorphisms $\alpha,\lambda,\rho$ such that

A1) $\alpha_{a,b,c} : a \otimes (b \otimes c) \cong (a \otimes b) \otimes c$ is natural for all $a,b,c \in \mathcal{C}$ and the diagram $$ \begin{array}{ccccc} a \otimes (b \otimes (c \otimes d)) & \stackrel{\alpha}{\rightarrow} & (a \otimes b) \otimes (c \otimes d) & \stackrel{\alpha}{\rightarrow} & ((a \otimes b) \otimes c) \otimes d \\ \downarrow\mathrm{id}\otimes\alpha & & & & \uparrow \alpha\otimes\mathrm{id} \\ a \otimes ((b \otimes c) \otimes d) & & \stackrel{\alpha}{\rightarrow} & & (a \otimes (b \otimes c)) \otimes d \end{array} $$ commutes for all $a,b,c,d \in \mathcal{C}$;

A2) $\lambda$ and $\rho$ are natural and $\lambda : e \otimes a \cong a$, $\rho : a \otimes e \cong a$ for all objects $a \in \mathcal{C}$ and the diagram $$ \begin{array}{ccc} a \otimes (e \otimes c) & \stackrel{\alpha}{\rightarrow} & (a \otimes e) \otimes c \\ \downarrow\mathrm{id}\otimes\lambda & & \downarrow\rho\otimes\mathrm{id} \\ a \otimes c & = & a \otimes c \end{array} $$ commutes for all $a.c \in \mathcal{C}$;

A3) $\lambda_e = \rho_e : e \otimes e \rightarrow e$.

These axioms imply that all such diagrams commute.

Some examples of monoidal categories are:

E1) any category with finite products is monoidal if one takes $a\otimes b$ to be the (chosen) product of the objects $a$ and $b$, with $e$ the terminal object; $\alpha,\lambda,\rho$ are the unique isomorphisms that commute with the appropriate projections;

E2) the usual "tensor products" give monoidal categories — whence the notation. Note that one cannot identify all isomorphic objects in $\mathcal{C}$.

Closed categories.

A monoidal category $\mathcal{C}$ is said to be symmetric if it comes with isomorphisms $\gamma_{a.b} : a \otimes b \cong b \otimes a$, natural on $a,b \in \mathcal{C}$ such that the following diagrams all commute: $$ \gamma_{a,b} \circ \gamma_{b,a} = \mathrm{id}\,; $$ $$ \rho_b = \lambda_b \circ \gamma_{b,e} : b\otimes e \cong b\,; $$ $$ \begin{array}{ccccc} a \otimes (b \otimes c) & \stackrel{\alpha}{\rightarrow} & (a \otimes b) \otimes c & \stackrel{\gamma}{\rightarrow} & c \otimes (a \otimes b) \\ \downarrow_{\mathrm{id}\otimes\gamma} & & & & \downarrow_\alpha \\ a \otimes (c \otimes b) & \stackrel{\alpha}{\rightarrow} & (a \otimes c) \otimes b & \stackrel{\gamma\otimes\mathrm{id}}{\rightarrow} & (c \otimes a) \otimes b \end{array} $$

A closed category $\mathcal{V}$ is a symmetric monoidal category in which each functor ${-}\otimes b: \mathcal{V} \rightarrow \mathcal{V}$ has a specified right-adjoint $({-})^b : \mathcal{V} \rightarrow \mathcal{V}$.

Some examples of closed monoidal categories are:

E3) the category $\mathsf{Rel}$ of relations, whose objects are sets $a,b,c,\ldots$ and in which an arrow $\sigma:a\rightarrow b$ is a subset $\sigma \subseteq a \otimes b$, the object $a \otimes b$ being the Cartesian product of the two sets (which is not the product in this category);

E4) the subsets of a monoid $M$ (partially ordered by inclusion, hence a category); if $A$, $B$ are two subsets of $M$, then $A \otimes B$ is $\{ab : a \in A,\,b \in B\}$ while $C^A$ is $\{b \in M : ab\in C\ \text{for all}\ a \in A\}$.

References

[a1] M. Barr,C. Wells, "Category theory for computing science", CRM (1990) Zbl 0714.18001
[a2] S. MacLane, "Categories for the working mathematician", Springer (1971)
How to Cite This Entry:
Closed monoidal category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Closed_monoidal_category&oldid=17458
This article was adapted from an original article by Michel Eytan (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article