Difference between revisions of "Divergent integral"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | d0336101.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/D033/D.0303610 Divergent integral | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A concept opposite to that of a convergent integral (see also [[Singular integral|Singular integral]]). For example, if a function $ f $ | |
+ | is defined on a bounded or unbounded interval $ [ a, b) $, | ||
+ | $ - \infty \leq a \leq b \leq \infty $, | ||
+ | if for each $ \eta \in [ a, b) $ | ||
+ | it is integrable on $ [ a, \eta ] $ | ||
+ | and if there is no finite limit | ||
− | + | $$ | |
+ | \lim\limits _ {\eta \rightarrow b } \ | ||
+ | \int\limits _ { a } ^ \eta | ||
+ | f ( x) dx, | ||
+ | $$ | ||
− | one says that the divergent integral | + | then one says that the integral $ \int _ {a} ^ {b} f ( x) dx $ |
+ | diverges. In the case that | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {\eta \rightarrow b } \ | ||
+ | \int\limits _ { a } ^ \eta | ||
+ | f ( x) dx = \ | ||
+ | + \infty \ \textrm{ or } \ \ | ||
+ | - \infty , | ||
+ | $$ | ||
+ | |||
+ | one says that the divergent integral $ \int _ {a} ^ {b} f ( x) dx $ | ||
+ | is equal to $ + \infty $ | ||
+ | or $ - \infty $, | ||
+ | respectively. |
Latest revision as of 19:36, 5 June 2020
A concept opposite to that of a convergent integral (see also Singular integral). For example, if a function $ f $
is defined on a bounded or unbounded interval $ [ a, b) $,
$ - \infty \leq a \leq b \leq \infty $,
if for each $ \eta \in [ a, b) $
it is integrable on $ [ a, \eta ] $
and if there is no finite limit
$$ \lim\limits _ {\eta \rightarrow b } \ \int\limits _ { a } ^ \eta f ( x) dx, $$
then one says that the integral $ \int _ {a} ^ {b} f ( x) dx $ diverges. In the case that
$$ \lim\limits _ {\eta \rightarrow b } \ \int\limits _ { a } ^ \eta f ( x) dx = \ + \infty \ \textrm{ or } \ \ - \infty , $$
one says that the divergent integral $ \int _ {a} ^ {b} f ( x) dx $ is equal to $ + \infty $ or $ - \infty $, respectively.
Divergent integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Divergent_integral&oldid=17382