Difference between revisions of "Jackson inequality"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | j0540001.png | ||
+ | $#A+1 = 44 n = 0 | ||
+ | $#C+1 = 44 : ~/encyclopedia/old_files/data/J054/J.0504000 Jackson inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | An inequality estimating the rate of decrease of the [[Best approximation|best approximation]] error of a function by trigonometric or algebraic polynomials in dependence on its differentiability and finite-difference properties. Let $ f $ | ||
+ | be a $ 2 \pi $- | ||
+ | periodic continuous function on the real axis, let $ E _ {n} ( f ) $ | ||
+ | be the best uniform approximation error of $ f $ | ||
+ | by trigonometric polynomials $ T _ {n} $ | ||
+ | of degree $ n $, | ||
+ | i.e. | ||
+ | |||
+ | $$ | ||
+ | E _ {n} ( f ) = \inf _ {T _ {n} } \max _ { x } | ||
+ | | f ( x) - T _ {n} ( x) | , | ||
+ | $$ | ||
and let | and let | ||
− | + | $$ | |
+ | \omega ( f ; \delta ) = \max _ {| t _ {1} - t _ {2} | | ||
+ | \leq \delta } | f ( t _ {1} ) - f ( t _ {2} ) | | ||
+ | $$ | ||
− | be the modulus of continuity of | + | be the modulus of continuity of $ f $( |
+ | cf. [[Continuity, modulus of|Continuity, modulus of]]). It was shown by D. Jackson [[#References|[1]]] that | ||
− | + | $$ \tag{* } | |
+ | E _ {n} ( f ) \leq C \omega \left ( f ; | ||
+ | \frac{1}{n} | ||
+ | \right ) | ||
+ | $$ | ||
− | (where | + | (where $ C $ |
+ | is an absolute constant), while if $ f $ | ||
+ | has an $ r $- | ||
+ | th order continuous derivative $ f ^ { ( r) } $, | ||
+ | $ r \geq 1 $, | ||
+ | then | ||
− | + | $$ | |
+ | E _ {n} ( f ) \leq | ||
+ | \frac{C _ {r} }{n ^ {r} } | ||
+ | \omega | ||
+ | \left ( f ^ { ( r) } ; | ||
+ | \frac{1}{n} | ||
+ | \right ) , | ||
+ | $$ | ||
− | where the constant | + | where the constant $ C _ {r} $ |
+ | depends on $ r $ | ||
+ | only. S.N. Bernshtein [[#References|[3]]] obtained inequality (*) in an independent manner for the case | ||
− | + | $$ | |
+ | \omega ( f ; t ) \leq K t ^ \alpha ,\ \ | ||
+ | 0 < \alpha < 1 . | ||
+ | $$ | ||
− | If | + | If $ f $ |
+ | is continuous or $ r $ | ||
+ | times continuously differentiable on a closed interval $ [ a , b ] $, | ||
+ | $ r = 1, 2 \dots $ | ||
+ | and if $ E _ {n} ( f ; a , b ) $ | ||
+ | is the best uniform approximation error of the function $ f $ | ||
+ | on $ [ a , b ] $ | ||
+ | by algebraic polynomials of degree $ n $, | ||
+ | then, for $ n > r $ | ||
+ | one has the relation $ ( f ^ { 0 } = f ) $ | ||
− | + | $$ | |
+ | E _ {n} ( f ; a , b ) \leq | ||
+ | \frac{A _ {r} ( b - a ) ^ {r} }{n ^ {r} } | ||
+ | \omega \left ( f ^ { ( r) } ; | ||
+ | \frac{b - a }{n} | ||
+ | \right ) , | ||
+ | $$ | ||
− | where the constant | + | where the constant $ A _ {r} $ |
+ | depends on $ r $ | ||
+ | only. | ||
− | The Jackson inequalities are also known as the Jackson theorems or as direct theorems in the theory of approximation of functions. They may be generalized in various directions: to approximation using an integral metric, to approximation by entire functions of finite order, to an estimate concerning the approximation using a modulus of smoothness of order | + | The Jackson inequalities are also known as the Jackson theorems or as direct theorems in the theory of approximation of functions. They may be generalized in various directions: to approximation using an integral metric, to approximation by entire functions of finite order, to an estimate concerning the approximation using a modulus of smoothness of order $ k $, |
+ | or to a function of several variables. The exact values of the constants in Jackson's inequalities have been determined in several cases. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Jackson, "Ueber die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung" , Göttingen (1911) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.N. Bernshtein, "On the best approximation of continuous functions by polynomials of a given degree (1912)" , ''Collected works'' , '''1''' , Moscow (1952) pp. 11–104</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Jackson, "Ueber die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung" , Göttingen (1911) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.N. Bernshtein, "On the best approximation of continuous functions by polynomials of a given degree (1912)" , ''Collected works'' , '''1''' , Moscow (1952) pp. 11–104</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
See also [[Approximation of functions, direct and inverse theorems|Approximation of functions, direct and inverse theorems]]. | See also [[Approximation of functions, direct and inverse theorems|Approximation of functions, direct and inverse theorems]]. | ||
− | Let | + | Let $ \omega _ {k} ( f; \delta ) $ |
+ | be the modulus of continuity of order $ k $, | ||
− | + | $$ | |
+ | \omega _ {k} ( f; \delta ) = \ | ||
+ | \sup _ { | ||
+ | \begin{array}{c} | ||
+ | | h | \leq t \\ | ||
+ | x, x + kh \in [ a, b] | ||
+ | \end{array} | ||
+ | } \ | ||
+ | \left | | ||
+ | \sum _ {\nu = 0 } ^ { k } | ||
+ | (- 1) ^ {k - \nu } | ||
+ | \left ( \begin{array}{c} | ||
+ | k \\ | ||
+ | \nu | ||
+ | \end{array} | ||
+ | \right ) | ||
+ | f ( x + \nu h) \ | ||
+ | \right | . | ||
+ | $$ | ||
Then, more generally, | Then, more generally, | ||
− | + | $$ | |
+ | E _ {n} ( f ) \leq C _ {k} \omega _ {k} ( f ; n ^ {-} 1 ) , | ||
+ | $$ | ||
+ | |||
+ | where $ C _ {k} $ | ||
+ | is independent of $ f $. | ||
+ | The best possible coefficients $ C _ {k} $ | ||
+ | were determined by J. Favard. For the interval $ [- 1, 1] $ | ||
+ | the constant $ C _ {1} $ | ||
+ | is $ 6 $. | ||
+ | A result of S.B. Stechkin says that | ||
+ | |||
+ | $$ | ||
+ | \omega _ {k} \left ( f; { | ||
+ | \frac{1}{n} | ||
+ | } \right ) \leq \ | ||
− | + | \frac{C _ {k} }{n ^ {k} } | |
− | + | \sum _ {i = 0 } ^ { n } | |
+ | ( i + 1) ^ {k - 1 } | ||
+ | E _ {i} ( f ) . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapt. 4</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.W. Meinardus, "Approximation von Funktionen und ihre numerische Behandlung" , Springer (1964) pp. Chapt. 1, §5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> T.J. Rivlin, "An introduction to the approximation of functions" , Dover, reprint (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapt. 4</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.W. Meinardus, "Approximation von Funktionen und ihre numerische Behandlung" , Springer (1964) pp. Chapt. 1, §5</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> T.J. Rivlin, "An introduction to the approximation of functions" , Dover, reprint (1981)</TD></TR></table> |
Latest revision as of 22:14, 5 June 2020
An inequality estimating the rate of decrease of the best approximation error of a function by trigonometric or algebraic polynomials in dependence on its differentiability and finite-difference properties. Let $ f $
be a $ 2 \pi $-
periodic continuous function on the real axis, let $ E _ {n} ( f ) $
be the best uniform approximation error of $ f $
by trigonometric polynomials $ T _ {n} $
of degree $ n $,
i.e.
$$ E _ {n} ( f ) = \inf _ {T _ {n} } \max _ { x } | f ( x) - T _ {n} ( x) | , $$
and let
$$ \omega ( f ; \delta ) = \max _ {| t _ {1} - t _ {2} | \leq \delta } | f ( t _ {1} ) - f ( t _ {2} ) | $$
be the modulus of continuity of $ f $( cf. Continuity, modulus of). It was shown by D. Jackson [1] that
$$ \tag{* } E _ {n} ( f ) \leq C \omega \left ( f ; \frac{1}{n} \right ) $$
(where $ C $ is an absolute constant), while if $ f $ has an $ r $- th order continuous derivative $ f ^ { ( r) } $, $ r \geq 1 $, then
$$ E _ {n} ( f ) \leq \frac{C _ {r} }{n ^ {r} } \omega \left ( f ^ { ( r) } ; \frac{1}{n} \right ) , $$
where the constant $ C _ {r} $ depends on $ r $ only. S.N. Bernshtein [3] obtained inequality (*) in an independent manner for the case
$$ \omega ( f ; t ) \leq K t ^ \alpha ,\ \ 0 < \alpha < 1 . $$
If $ f $ is continuous or $ r $ times continuously differentiable on a closed interval $ [ a , b ] $, $ r = 1, 2 \dots $ and if $ E _ {n} ( f ; a , b ) $ is the best uniform approximation error of the function $ f $ on $ [ a , b ] $ by algebraic polynomials of degree $ n $, then, for $ n > r $ one has the relation $ ( f ^ { 0 } = f ) $
$$ E _ {n} ( f ; a , b ) \leq \frac{A _ {r} ( b - a ) ^ {r} }{n ^ {r} } \omega \left ( f ^ { ( r) } ; \frac{b - a }{n} \right ) , $$
where the constant $ A _ {r} $ depends on $ r $ only.
The Jackson inequalities are also known as the Jackson theorems or as direct theorems in the theory of approximation of functions. They may be generalized in various directions: to approximation using an integral metric, to approximation by entire functions of finite order, to an estimate concerning the approximation using a modulus of smoothness of order $ k $, or to a function of several variables. The exact values of the constants in Jackson's inequalities have been determined in several cases.
References
[1] | D. Jackson, "Ueber die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung" , Göttingen (1911) (Thesis) |
[2] | S.M. Nikol'skii, "Approximation of functions of several variables and imbedding theorems" , Springer (1975) (Translated from Russian) |
[3] | S.N. Bernshtein, "On the best approximation of continuous functions by polynomials of a given degree (1912)" , Collected works , 1 , Moscow (1952) pp. 11–104 |
[4] | N.P. Korneichuk, "Extremal problems in approximation theory" , Moscow (1976) (In Russian) |
[5] | G.G. Lorentz, "Approximation of functions" , Holt, Rinehart & Winston (1966) |
Comments
See also Approximation of functions, direct and inverse theorems.
Let $ \omega _ {k} ( f; \delta ) $ be the modulus of continuity of order $ k $,
$$ \omega _ {k} ( f; \delta ) = \ \sup _ { \begin{array}{c} | h | \leq t \\ x, x + kh \in [ a, b] \end{array} } \ \left | \sum _ {\nu = 0 } ^ { k } (- 1) ^ {k - \nu } \left ( \begin{array}{c} k \\ \nu \end{array} \right ) f ( x + \nu h) \ \right | . $$
Then, more generally,
$$ E _ {n} ( f ) \leq C _ {k} \omega _ {k} ( f ; n ^ {-} 1 ) , $$
where $ C _ {k} $ is independent of $ f $. The best possible coefficients $ C _ {k} $ were determined by J. Favard. For the interval $ [- 1, 1] $ the constant $ C _ {1} $ is $ 6 $. A result of S.B. Stechkin says that
$$ \omega _ {k} \left ( f; { \frac{1}{n} } \right ) \leq \ \frac{C _ {k} }{n ^ {k} } \sum _ {i = 0 } ^ { n } ( i + 1) ^ {k - 1 } E _ {i} ( f ) . $$
References
[a1] | E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapt. 4 |
[a2] | G.W. Meinardus, "Approximation von Funktionen und ihre numerische Behandlung" , Springer (1964) pp. Chapt. 1, §5 |
[a3] | T.J. Rivlin, "An introduction to the approximation of functions" , Dover, reprint (1981) |
Jackson inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jackson_inequality&oldid=17333