Difference between revisions of "Lefschetz number"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0579901.png | ||
+ | $#A+1 = 33 n = 0 | ||
+ | $#C+1 = 33 : ~/encyclopedia/old_files/data/L057/L.0507990 Lefschetz number | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An invariant of a mapping of a chain (cochain) complex or topological space into itself. Let $ X $ | |
+ | be a chain complex of Abelian groups (respectively, a topological space), $ f : X \rightarrow X $ | ||
+ | an endomorphism of degree 0 (respectively, a continuous mapping; cf. [[Degree of a mapping|Degree of a mapping]]), $ H _ {i} ( X , \mathbf Q ) $ | ||
+ | the [[Homology group|homology group]] of the object $ X $ | ||
+ | with coefficients in the field of rational numbers $ \mathbf Q $, | ||
+ | where | ||
− | < | + | $$ |
+ | \sum _ { i } \mathop{\rm dim} _ {\mathbf Q } H _ {i} ( X , \mathbf Q ) < \infty , | ||
+ | $$ | ||
− | + | and let $ t _ {i} $ | |
+ | be the [[Trace|trace]] of the linear transformation | ||
− | + | $$ | |
+ | f _ {*} : H _ {i} ( X , \mathbf Q ) \rightarrow H _ {i} ( X , \mathbf Q ) . | ||
+ | $$ | ||
− | + | By definition, the Lefschetz number of $ f $ | |
+ | is | ||
− | + | $$ | |
+ | \Lambda (f) = \sum_{i=0}^\infty (-1)^i t_i . | ||
+ | $$ | ||
− | + | In the case of a cochain complex the definition is similar. In particular, the Lefschetz number of the identity mapping $ e _ {X} $ | |
+ | is equal to the [[Euler characteristic|Euler characteristic]] $ \chi ( X) $ | ||
+ | of the object $ X $. | ||
+ | If $ X $ | ||
+ | is a chain (cochain) complex of free Abelian groups or a topological space, then the number $ \Lambda ( f ) $ | ||
+ | is always an integer. The Lefschetz number was introduced by S. Lefschetz [[#References|[1]]] for the solution of the problem on the number of fixed points of a continuous mapping (see [[Lefschetz formula]]). | ||
− | + | To find the Lefschetz number of an endomorphism $ f $ | |
+ | of a complex $ X $ | ||
+ | consisting of finite-dimensional vector spaces $ X _ {i} $ | ||
+ | over $ \mathbf Q $ | ||
+ | one can use the following formula (which is sometimes called the Hopf trace formula): | ||
− | + | $$ | |
+ | \Lambda ( f ) = \sum _ {i=0} ^ \infty (- 1) ^ {i} T _ {i} , | ||
+ | $$ | ||
− | where | + | where $ T _ {i} $ |
+ | is the trace of the linear transformation $ f : X _ {i} \rightarrow X _ {i} $. | ||
+ | In particular, if $ X $ | ||
+ | is a finite [[Cellular space|cellular space]], $ \phi : X \rightarrow X $ | ||
+ | is a continuous mapping of it into itself and $ \psi : X \rightarrow X $ | ||
+ | is a cellular approximation of $ \phi $, | ||
+ | then | ||
− | + | $$ | |
+ | \Lambda ( \phi ) = \Lambda ( \psi ) = \sum _ {i=0}^ \infty (- 1) ^ {i} | ||
+ | T _ {i} , | ||
+ | $$ | ||
− | + | where $ T _ {i} $ | |
+ | is the trace of the transformation | ||
− | + | $$ | |
+ | \psi _ {\#} : C _ {i} ( X , \mathbf Q ) \rightarrow C _ {i} ( X , \mathbf Q ) | ||
+ | $$ | ||
− | + | induced by $ \psi $ | |
− | + | and $ C _ {i} ( X _ {i} , \mathbf Q ) $ | |
− | + | is the group of rational $ i $- | |
− | + | dimensional chains of $ X $. | |
− | |||
− | |||
+ | Everything stated above can be generalized to the case of an arbitrary coefficient field. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dugundji, A. Granas, "Fixed point theory" , PWN (1982)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Lefschetz, "Intersections and transformations of complexes and manifolds" ''Trans. Amer. Math. Soc.'' , '''28''' (1926) pp. 1–49</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Seifert, W. Threlfall, "A textbook of topology" , Acad. Press (1980) (Translated from German)</TD></TR><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Dugundji, A. Granas, "Fixed point theory" , PWN (1982)</TD></TR> | ||
+ | </table> |
Latest revision as of 08:31, 6 January 2024
An invariant of a mapping of a chain (cochain) complex or topological space into itself. Let $ X $
be a chain complex of Abelian groups (respectively, a topological space), $ f : X \rightarrow X $
an endomorphism of degree 0 (respectively, a continuous mapping; cf. Degree of a mapping), $ H _ {i} ( X , \mathbf Q ) $
the homology group of the object $ X $
with coefficients in the field of rational numbers $ \mathbf Q $,
where
$$ \sum _ { i } \mathop{\rm dim} _ {\mathbf Q } H _ {i} ( X , \mathbf Q ) < \infty , $$
and let $ t _ {i} $ be the trace of the linear transformation
$$ f _ {*} : H _ {i} ( X , \mathbf Q ) \rightarrow H _ {i} ( X , \mathbf Q ) . $$
By definition, the Lefschetz number of $ f $ is
$$ \Lambda (f) = \sum_{i=0}^\infty (-1)^i t_i . $$
In the case of a cochain complex the definition is similar. In particular, the Lefschetz number of the identity mapping $ e _ {X} $ is equal to the Euler characteristic $ \chi ( X) $ of the object $ X $. If $ X $ is a chain (cochain) complex of free Abelian groups or a topological space, then the number $ \Lambda ( f ) $ is always an integer. The Lefschetz number was introduced by S. Lefschetz [1] for the solution of the problem on the number of fixed points of a continuous mapping (see Lefschetz formula).
To find the Lefschetz number of an endomorphism $ f $ of a complex $ X $ consisting of finite-dimensional vector spaces $ X _ {i} $ over $ \mathbf Q $ one can use the following formula (which is sometimes called the Hopf trace formula):
$$ \Lambda ( f ) = \sum _ {i=0} ^ \infty (- 1) ^ {i} T _ {i} , $$
where $ T _ {i} $ is the trace of the linear transformation $ f : X _ {i} \rightarrow X _ {i} $. In particular, if $ X $ is a finite cellular space, $ \phi : X \rightarrow X $ is a continuous mapping of it into itself and $ \psi : X \rightarrow X $ is a cellular approximation of $ \phi $, then
$$ \Lambda ( \phi ) = \Lambda ( \psi ) = \sum _ {i=0}^ \infty (- 1) ^ {i} T _ {i} , $$
where $ T _ {i} $ is the trace of the transformation
$$ \psi _ {\#} : C _ {i} ( X , \mathbf Q ) \rightarrow C _ {i} ( X , \mathbf Q ) $$
induced by $ \psi $ and $ C _ {i} ( X _ {i} , \mathbf Q ) $ is the group of rational $ i $- dimensional chains of $ X $.
Everything stated above can be generalized to the case of an arbitrary coefficient field.
References
[1] | S. Lefschetz, "Intersections and transformations of complexes and manifolds" Trans. Amer. Math. Soc. , 28 (1926) pp. 1–49 |
[2] | H. Seifert, W. Threlfall, "A textbook of topology" , Acad. Press (1980) (Translated from German) |
[a1] | J. Dugundji, A. Granas, "Fixed point theory" , PWN (1982) |
Lefschetz number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lefschetz_number&oldid=17310