Difference between revisions of "Wiener measure"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | w0979301.png | ||
| + | $#A+1 = 20 n = 0 | ||
| + | $#C+1 = 20 : ~/encyclopedia/old_files/data/W097/W.0907930 Wiener measure | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | < | + | The [[Probability measure|probability measure]] $ \mu _ {W} $ |
| + | on the space $ C[ 0, 1] $ | ||
| + | of continuous real-valued functions $ x $ | ||
| + | on the interval $ [ 0, 1] $, | ||
| + | defined as follows. Let $ 0 < t _ {1} < \dots < t _ {n} \leq 1 $ | ||
| + | be an arbitrary sample of points from $ [ 0, 1] $ | ||
| + | and let $ A _ {1} \dots A _ {n} $ | ||
| + | be Borel sets on the real line. Let $ C( t _ {1} \dots t _ {n} ; A _ {1} \dots A _ {n} ) $ | ||
| + | denote the set of functions $ x \in C[ 0, 1] $ | ||
| + | for which $ x( t _ {k} ) \in A _ {k} $, | ||
| + | $ k = 1 \dots n $. | ||
| + | Then | ||
| − | + | $$ \tag{* } | |
| + | \mu _ {W} ( C ( t _ {1} \dots t _ {n} ; A _ {1} \dots A _ {n} )) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | \int\limits _ { A _ 1 } p ( t _ {1} , x _ {1} ) dx _ {1} \int\limits _ { A _ 2 } p ( t _ {2} - t _ {1} , x _ {2} - x _ {1} ) dx _ {2} \dots | ||
| + | $$ | ||
| − | + | $$ | |
| + | {} \dots \int\limits _ { A _ n } p ( t _ {n} - t _ {n-} 1 , x _ {n} - x _ {n-} 1 ) dx _ {n} , | ||
| + | $$ | ||
| − | + | where | |
| + | $$ | ||
| + | p ( t, x) = { | ||
| + | \frac{1}{\sqrt {2 \pi t } } | ||
| + | } e ^ {- x ^ {2} / 2 t } . | ||
| + | $$ | ||
| + | Using the theorem on the extension of a measure it is possible to define the value of the measure $ \mu _ {W} $ | ||
| + | on all Borel sets of $ C[ 0, 1] $ | ||
| + | on the basis of equation (*). | ||
====Comments==== | ====Comments==== | ||
| − | The Wiener measure was introduced by N. Wiener [[#References|[a1]]] in 1923; it was the first major extension of integration theory beyond a finite-dimensional setting. The construction outlined above extends easily to define Wiener measure | + | The Wiener measure was introduced by N. Wiener [[#References|[a1]]] in 1923; it was the first major extension of integration theory beyond a finite-dimensional setting. The construction outlined above extends easily to define Wiener measure $ \mu _ {W} $ |
| + | on $ C [ 0, \infty ) $. | ||
| + | The coordinate process $ x( t) $ | ||
| + | is then known as [[Brownian motion|Brownian motion]] or the [[Wiener process|Wiener process]]. Its formal derivative "dxt/dt" is known as Gaussian [[White noise|white noise]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Wiener, "Differential space" ''J. Math. & Phys.'' , '''2''' (1923) pp. 132–174</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T. Hida, "Brownian motion" , Springer (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> I. Karatzas, S.E. Shreve, "Brownian motion and stochastic calculus" , Springer (1988)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L. Partzsch, "Vorlesungen zum eindimensionalen Wienerschen Prozess" , Teubner (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, T. Lindstrøm, "Nonstandard methods in stochastic analysis and mathematical physics" , Acad. Press (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Wiener, "Differential space" ''J. Math. & Phys.'' , '''2''' (1923) pp. 132–174</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T. Hida, "Brownian motion" , Springer (1980)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> I. Karatzas, S.E. Shreve, "Brownian motion and stochastic calculus" , Springer (1988)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L. Partzsch, "Vorlesungen zum eindimensionalen Wienerschen Prozess" , Teubner (1984)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, T. Lindstrøm, "Nonstandard methods in stochastic analysis and mathematical physics" , Acad. Press (1986)</TD></TR></table> | ||
Latest revision as of 08:29, 6 June 2020
The probability measure $ \mu _ {W} $
on the space $ C[ 0, 1] $
of continuous real-valued functions $ x $
on the interval $ [ 0, 1] $,
defined as follows. Let $ 0 < t _ {1} < \dots < t _ {n} \leq 1 $
be an arbitrary sample of points from $ [ 0, 1] $
and let $ A _ {1} \dots A _ {n} $
be Borel sets on the real line. Let $ C( t _ {1} \dots t _ {n} ; A _ {1} \dots A _ {n} ) $
denote the set of functions $ x \in C[ 0, 1] $
for which $ x( t _ {k} ) \in A _ {k} $,
$ k = 1 \dots n $.
Then
$$ \tag{* } \mu _ {W} ( C ( t _ {1} \dots t _ {n} ; A _ {1} \dots A _ {n} )) = $$
$$ = \ \int\limits _ { A _ 1 } p ( t _ {1} , x _ {1} ) dx _ {1} \int\limits _ { A _ 2 } p ( t _ {2} - t _ {1} , x _ {2} - x _ {1} ) dx _ {2} \dots $$
$$ {} \dots \int\limits _ { A _ n } p ( t _ {n} - t _ {n-} 1 , x _ {n} - x _ {n-} 1 ) dx _ {n} , $$
where
$$ p ( t, x) = { \frac{1}{\sqrt {2 \pi t } } } e ^ {- x ^ {2} / 2 t } . $$
Using the theorem on the extension of a measure it is possible to define the value of the measure $ \mu _ {W} $ on all Borel sets of $ C[ 0, 1] $ on the basis of equation (*).
Comments
The Wiener measure was introduced by N. Wiener [a1] in 1923; it was the first major extension of integration theory beyond a finite-dimensional setting. The construction outlined above extends easily to define Wiener measure $ \mu _ {W} $ on $ C [ 0, \infty ) $. The coordinate process $ x( t) $ is then known as Brownian motion or the Wiener process. Its formal derivative "dxt/dt" is known as Gaussian white noise.
References
| [a1] | N. Wiener, "Differential space" J. Math. & Phys. , 2 (1923) pp. 132–174 |
| [a2] | T. Hida, "Brownian motion" , Springer (1980) |
| [a3] | I. Karatzas, S.E. Shreve, "Brownian motion and stochastic calculus" , Springer (1988) |
| [a4] | L. Partzsch, "Vorlesungen zum eindimensionalen Wienerschen Prozess" , Teubner (1984) |
| [a5] | J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973) |
| [a6] | S. Albeverio, J.E. Fenstad, R. Høegh-Krohn, T. Lindstrøm, "Nonstandard methods in stochastic analysis and mathematical physics" , Acad. Press (1986) |
Wiener measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener_measure&oldid=17302