Difference between revisions of "Winding number"
(Importing text file) |
m (→References: zbl link) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0980201.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/W098/W.0908020 Winding number | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ \Gamma = \{ {z( \tau ) } : {\alpha \leq \tau \leq \beta } \} $ | |
+ | be an arc in the complex plane and let $ c $ | ||
+ | be a point not on $ \Gamma $. | ||
+ | A continuous argument of $ z- c $ | ||
+ | on $ \Gamma $ | ||
+ | is a continuous real-valued function $ \phi $ | ||
+ | on $ [ \alpha , \beta ] $ | ||
+ | that for each $ \tau \in [ \alpha , \beta ] $ | ||
+ | is an [[Argument|argument]] of $ z ( \tau ) - c $, | ||
+ | i.e. $ z ( \tau ) - c = r \mathop{\rm exp} ( i \phi ( \tau )) $ | ||
+ | for some $ r $. | ||
+ | Such functions can be found, and if $ \phi ( \tau ) $, | ||
+ | $ \psi ( \tau ) $ | ||
+ | are two continuous arguments, then they differ by a constant integral multiple of $ 2 \pi $. | ||
+ | It follows that the increase of the argument, $ \phi ( \beta ) - \phi ( \alpha ) $, | ||
+ | does not depend on the choice of the continuous argument. It is denoted by $ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma $. | ||
+ | If $ \Gamma $ | ||
+ | is a piecewise-regular arc, | ||
− | + | $$ | |
+ | [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma = \ | ||
+ | \mathop{\rm Im} \int\limits _ \Gamma | ||
+ | \frac{1}{z-c} dz . | ||
+ | $$ | ||
− | is | + | In the special case that $ \Gamma $ |
+ | is a closed curve, i.e. $ z ( \alpha ) = z ( \beta ) $, | ||
+ | $ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma $ | ||
+ | is necessarily an integral multiple of $ 2 \pi $ | ||
+ | and the integer | ||
− | + | $$ | |
+ | n ( \Gamma , c ) = | ||
+ | \frac{1}{2 \pi } | ||
+ | [ \mathop{\rm arg} z( \tau ) - c] _ \Gamma $$ | ||
+ | |||
+ | is called the winding number of $ \Gamma $ | ||
+ | with respect to $ c $. | ||
+ | For a piecewise-regular closed curve $ \Gamma $ | ||
+ | with $ c $ | ||
+ | not on $ \Gamma $ | ||
+ | one has | ||
+ | |||
+ | $$ | ||
+ | n ( \Gamma , c ) = | ||
+ | \frac{1}{2 \pi i } | ||
+ | \int\limits _ \Gamma | ||
+ | \frac{1}{z-c} dz . | ||
+ | $$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Henrici, | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> P. Henrici, "Applied and computational complex analysis" , '''1''' , Wiley (Interscience) (1974) pp. §4.6 {{ZBL|0313.30001}}</TD></TR> | ||
+ | </table> |
Latest revision as of 17:36, 11 November 2023
Let $ \Gamma = \{ {z( \tau ) } : {\alpha \leq \tau \leq \beta } \} $
be an arc in the complex plane and let $ c $
be a point not on $ \Gamma $.
A continuous argument of $ z- c $
on $ \Gamma $
is a continuous real-valued function $ \phi $
on $ [ \alpha , \beta ] $
that for each $ \tau \in [ \alpha , \beta ] $
is an argument of $ z ( \tau ) - c $,
i.e. $ z ( \tau ) - c = r \mathop{\rm exp} ( i \phi ( \tau )) $
for some $ r $.
Such functions can be found, and if $ \phi ( \tau ) $,
$ \psi ( \tau ) $
are two continuous arguments, then they differ by a constant integral multiple of $ 2 \pi $.
It follows that the increase of the argument, $ \phi ( \beta ) - \phi ( \alpha ) $,
does not depend on the choice of the continuous argument. It is denoted by $ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma $.
If $ \Gamma $
is a piecewise-regular arc,
$$ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma = \ \mathop{\rm Im} \int\limits _ \Gamma \frac{1}{z-c} dz . $$
In the special case that $ \Gamma $ is a closed curve, i.e. $ z ( \alpha ) = z ( \beta ) $, $ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma $ is necessarily an integral multiple of $ 2 \pi $ and the integer
$$ n ( \Gamma , c ) = \frac{1}{2 \pi } [ \mathop{\rm arg} z( \tau ) - c] _ \Gamma $$
is called the winding number of $ \Gamma $ with respect to $ c $. For a piecewise-regular closed curve $ \Gamma $ with $ c $ not on $ \Gamma $ one has
$$ n ( \Gamma , c ) = \frac{1}{2 \pi i } \int\limits _ \Gamma \frac{1}{z-c} dz . $$
References
[a1] | P. Henrici, "Applied and computational complex analysis" , 1 , Wiley (Interscience) (1974) pp. §4.6 Zbl 0313.30001 |
Winding number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Winding_number&oldid=17188