Difference between revisions of "Luxemburg norm"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0609901.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/L060/L.0600990 Luxemburg norm | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A function | A function | ||
− | + | $$ | |
+ | \| x \| _ {(M)} = \inf | ||
+ | \left \{ { | ||
+ | \lambda } : {\lambda > 0 , \int\limits _ { G } M ( \lambda ^ {-1} x ( t) ) d t \leq 1 | ||
+ | } \right \} | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ M ( u) $ | ||
+ | is an even convex function that increases for positive $ u $, | ||
− | + | $$ | |
+ | \lim\limits _ {u \rightarrow 0 } u ^ {-1} M ( u) = \ | ||
+ | \lim\limits _ {u \rightarrow \infty } u ( M ( u) ) ^ {-1} = 0 , | ||
+ | $$ | ||
− | + | $ M ( u) > 0 $ | |
+ | for $ u > 0 $, | ||
+ | and $ G $ | ||
+ | is a bounded set in $ \mathbf R ^ {n} $. | ||
+ | The properties of this norm were studied by W.A.J. Luxemburg [[#References|[1]]]. The Luxemburg norm is equivalent to the Orlicz norm (see [[Orlicz space|Orlicz space]]), and | ||
− | + | $$ | |
+ | \| x \| _ {(M)} \leq \| x \| _ {M} \leq 2 \| x \| _ {(M)}. | ||
+ | $$ | ||
− | + | If the functions $ M ( u) $ | |
+ | and $ N ( u) $ | ||
+ | are complementary (or dual) to each other (see [[Orlicz class|Orlicz class]]), then | ||
− | + | $$ | |
+ | \| x \| _ {(M)} = \ | ||
+ | \sup | ||
+ | \left \{ { | ||
+ | \int\limits _ { G } x ( t) y ( t) d t } : {\| y \| _ {(N)} \leq 1 } \right \} | ||
+ | . | ||
+ | $$ | ||
− | + | If $ \chi _ {E} ( t) $ | |
+ | is the characteristic function of a measurable subset $ E \subset G $, | ||
+ | then | ||
− | + | $$ | |
+ | \| \chi _ {E} \| _ {(M)} = \ | ||
− | + | \frac{1}{M ^ {-1} ( 1 / \mathop{\rm mes} E ) } | |
+ | . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.A.J. Luxemburg, "Banach function spaces" , T.U. Delft (1955) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Krasnosel'skii, Ya.B. Rutitskii, "Convex functions and Orlicz spaces" , Noordhoff (1961) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> W.A.J. Luxemburg, "Banach function spaces" , T.U. Delft (1955) (Thesis)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.A. Krasnosel'skii, Ya.B. Rutitskii, "Convex functions and Orlicz spaces" , Noordhoff (1961) (Translated from Russian)</TD></TR></table> |
Latest revision as of 19:39, 19 January 2024
A function
$$ \| x \| _ {(M)} = \inf \left \{ { \lambda } : {\lambda > 0 , \int\limits _ { G } M ( \lambda ^ {-1} x ( t) ) d t \leq 1 } \right \} , $$
where $ M ( u) $ is an even convex function that increases for positive $ u $,
$$ \lim\limits _ {u \rightarrow 0 } u ^ {-1} M ( u) = \ \lim\limits _ {u \rightarrow \infty } u ( M ( u) ) ^ {-1} = 0 , $$
$ M ( u) > 0 $ for $ u > 0 $, and $ G $ is a bounded set in $ \mathbf R ^ {n} $. The properties of this norm were studied by W.A.J. Luxemburg [1]. The Luxemburg norm is equivalent to the Orlicz norm (see Orlicz space), and
$$ \| x \| _ {(M)} \leq \| x \| _ {M} \leq 2 \| x \| _ {(M)}. $$
If the functions $ M ( u) $ and $ N ( u) $ are complementary (or dual) to each other (see Orlicz class), then
$$ \| x \| _ {(M)} = \ \sup \left \{ { \int\limits _ { G } x ( t) y ( t) d t } : {\| y \| _ {(N)} \leq 1 } \right \} . $$
If $ \chi _ {E} ( t) $ is the characteristic function of a measurable subset $ E \subset G $, then
$$ \| \chi _ {E} \| _ {(M)} = \ \frac{1}{M ^ {-1} ( 1 / \mathop{\rm mes} E ) } . $$
References
[1] | W.A.J. Luxemburg, "Banach function spaces" , T.U. Delft (1955) (Thesis) |
[2] | M.A. Krasnosel'skii, Ya.B. Rutitskii, "Convex functions and Orlicz spaces" , Noordhoff (1961) (Translated from Russian) |
Luxemburg norm. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Luxemburg_norm&oldid=17123