|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735302.png" />-vector, over a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735303.png" />''
| + | <!-- |
| + | p0735302.png |
| + | $#A+1 = 73 n = 0 |
| + | $#C+1 = 73 : ~/encyclopedia/old_files/data/P073/P.0703530 Poly\AAhvector, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | An element of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735304.png" />-th exterior degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735305.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735306.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735307.png" /> (see [[Exterior algebra|Exterior algebra]]). A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735308.png" />-vector can be understood as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p0735309.png" />-times skew-symmetrized contravariant tensor on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353010.png" />. Any linearly independent system of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353011.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353012.png" /> defines a non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353013.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353014.png" />; such a poly-vector is called factorable, decomposable, pure, or prime (often simply a poly-vector). Here two linearly independent systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353016.png" /> generate the same subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353017.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353019.png" />. For any non-zero poly-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353020.png" />, its annihilator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353021.png" /> is a subspace of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353022.png" />, and the poly-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353023.png" /> is pure if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353024.png" />. The pure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353025.png" />-vectors of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353026.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353027.png" /> form an algebraic variety in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353028.png" />; the corresponding projective algebraic variety is a [[Grassmann manifold|Grassmann manifold]]. Any non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353029.png" />-vector or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353030.png" />-vector in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353031.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353032.png" /> is pure, but a bivector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353033.png" /> is pure if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353034.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353035.png" /> is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353037.png" />, then the coordinates of the poly-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353038.png" /> in the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353039.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353040.png" /> are the minors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353042.png" />, of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353043.png" />. In particular, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353044.png" />,
| + | '' $ p $- |
| + | vector, over a vector space $ V $'' |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353045.png" /></td> </tr></table>
| + | An element of the $ p $- |
| + | th exterior degree $ \wedge ^ {p} V $ |
| + | of the space $ V $ |
| + | over a field $ K $( |
| + | see [[Exterior algebra|Exterior algebra]]). A $ p $- |
| + | vector can be understood as a $ p $- |
| + | times skew-symmetrized contravariant tensor on $ V $. |
| + | Any linearly independent system of vectors $ x _ {1} \dots x _ {p} $ |
| + | from $ V $ |
| + | defines a non-zero $ p $- |
| + | vector $ x _ {1} \wedge \dots \wedge x _ {p} $; |
| + | such a poly-vector is called factorable, decomposable, pure, or prime (often simply a poly-vector). Here two linearly independent systems $ x _ {1} \dots x _ {p} $ |
| + | and $ y _ {1} \dots y _ {p} $ |
| + | generate the same subspace in $ V $ |
| + | if and only if $ y _ {1} \wedge \dots \wedge y _ {p} = cx _ {1} \wedge \dots \wedge x _ {p} $, |
| + | where $ c \in K $. |
| + | For any non-zero poly-vector $ t \in \wedge ^ {p} V $, |
| + | its annihilator $ \mathop{\rm Ann} t = \{ {v \in V } : {t \wedge v = 0 } \} $ |
| + | is a subspace of dimension $ \leq p $, |
| + | and the poly-vector $ t $ |
| + | is pure if and only if $ \mathop{\rm dim} \mathop{\rm Ann} t = p $. |
| + | The pure $ p $- |
| + | vectors of an $ n $- |
| + | dimensional space $ V $ |
| + | form an algebraic variety in $ \wedge ^ {p} V $; |
| + | the corresponding projective algebraic variety is a [[Grassmann manifold|Grassmann manifold]]. Any non-zero $ n $- |
| + | vector or $ ( n- 1) $- |
| + | vector in an $ n $- |
| + | dimensional space $ V $ |
| + | is pure, but a bivector $ t $ |
| + | is pure if and only if $ t \wedge t = 0 $. |
| | | |
− | If one specifies a non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353046.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353047.png" />, a duality between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353048.png" />-vectors and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353049.png" />-vectors is obtained, i.e. a natural isomorphism | + | If $ v _ {1} \dots v _ {n} $ |
| + | is a basis of $ V $ |
| + | and $ x _ {i} = \sum_{j=1} ^ {n} x _ {i} ^ {j} v _ {j} $, |
| + | then the coordinates of the poly-vector $ t = x _ {1} \wedge \dots \wedge x _ {p} $ |
| + | in the basis $ \{ {v _ {i _ {1} } \wedge \dots \wedge v _ {i _ {p} } } : {i _ {1} < \dots < i _ {p} } \} $ |
| + | of the space $ \wedge ^ {p} V $ |
| + | are the minors $ t ^ {i _ {1} \dots i _ {p} } = \mathop{\rm det} \| x _ {i} ^ {i _ {k} } \| $, |
| + | $ i _ {1} < \dots < i _ {p} $, |
| + | of the matrix $ \| x _ {i} ^ {j} \| $. |
| + | In particular, for $ p = n $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353050.png" /></td> </tr></table>
| + | $$ |
| + | x _ {1} \wedge \dots \wedge x _ {n} = \ |
| + | \mathop{\rm det} \| x _ {i} ^ {j} \| v _ {1} \wedge \dots \wedge v _ {n} . |
| + | $$ |
| | | |
− | such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353051.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353053.png" />.
| + | If one specifies a non-zero $ n $- |
| + | vector $ \omega \in \wedge ^ {n} V $, |
| + | a duality between $ p $- |
| + | vectors and $ ( n- p) $- |
| + | vectors is obtained, i.e. a natural isomorphism |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353054.png" /> and let an inner product be defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353055.png" />, then in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353056.png" /> an inner product is induced with the following property: For any orthonormal basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353057.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353058.png" /> the basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353059.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353060.png" /> is also orthonormal. The scalar square
| + | $$ |
| + | \pi : \wedge ^ {p} ( V) \rightarrow \ |
| + | ( \wedge ^ {n-p} V) ^ {*} \cong \wedge ^ {n-p} ( V ^ {*} ) |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353061.png" /></td> </tr></table>
| + | such that $ t \wedge u = \pi ( t)( u) \omega $ |
| + | for all $ t \in \wedge ^ {p} V $ |
| + | and $ u \in \wedge ^ {n-p} V $. |
| | | |
− | of a pure poly-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353062.png" /> coincides with the square of the volume of the parallelopipedon in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353063.png" /> constructed on the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353064.png" />. If one specifies an orientation in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353065.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353066.png" /> (which is equivalent to choosing an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353067.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353068.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353069.png" />), then the above duality leads to a natural isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353070.png" />. In particular, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353071.png" />-vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353072.png" /> corresponds to a vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353073.png" />, called the vector product of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073530/p07353074.png" />. | + | Let $ k = \mathbf R $ |
| + | and let an inner product be defined in $ V $, |
| + | then in $ \wedge ^ {p} V $ |
| + | an inner product is induced with the following property: For any orthonormal basis $ v _ {1} \dots v _ {n} $ |
| + | in $ V $ |
| + | the basis $ \{ {v _ {i _ {1} } \wedge \dots \wedge v _ {i _ {p} } } : {i _ {1} < \dots < i _ {p} } \} $ |
| + | in $ \wedge ^ {p} V $ |
| + | is also orthonormal. The scalar square |
| + | |
| + | $$ |
| + | ( t, t) = \sum _ {i _ {1} < \dots < i _ {p} } |
| + | ( t ^ {i _ {1} \dots i _ {p} } ) ^ {2} |
| + | $$ |
| + | |
| + | of a pure poly-vector $ t = x _ {1} \wedge \dots \wedge x _ {p} $ |
| + | coincides with the square of the volume of the parallelopipedon in $ V $ |
| + | constructed on the vectors $ x _ {1} \dots x _ {p} $. |
| + | If one specifies an orientation in the $ n $- |
| + | dimensional Euclidean space $ V $( |
| + | which is equivalent to choosing an $ n $- |
| + | vector $ \omega $ |
| + | for which $ ( \omega , \omega ) = 1 $), |
| + | then the above duality leads to a natural isomorphism $ \gamma : \wedge ^ {p} V \rightarrow \wedge ^ {n-p} V $. |
| + | In particular, the $ ( n- 1) $- |
| + | vector $ t = x _ {1} \wedge \dots \wedge x _ {n-1} $ |
| + | corresponds to a vector $ \gamma ( t) \in V $, |
| + | called the vector product of the vectors $ x _ {1} \dots x _ {n-1} $. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Postnikov, "Linear algebra and differential geometry" , Moscow (1979) (In Russian)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Postnikov, "Linear algebra and differential geometry" , Moscow (1979) (In Russian)</TD></TR> |
| + | </table> |
$ p $-
vector, over a vector space $ V $
An element of the $ p $-
th exterior degree $ \wedge ^ {p} V $
of the space $ V $
over a field $ K $(
see Exterior algebra). A $ p $-
vector can be understood as a $ p $-
times skew-symmetrized contravariant tensor on $ V $.
Any linearly independent system of vectors $ x _ {1} \dots x _ {p} $
from $ V $
defines a non-zero $ p $-
vector $ x _ {1} \wedge \dots \wedge x _ {p} $;
such a poly-vector is called factorable, decomposable, pure, or prime (often simply a poly-vector). Here two linearly independent systems $ x _ {1} \dots x _ {p} $
and $ y _ {1} \dots y _ {p} $
generate the same subspace in $ V $
if and only if $ y _ {1} \wedge \dots \wedge y _ {p} = cx _ {1} \wedge \dots \wedge x _ {p} $,
where $ c \in K $.
For any non-zero poly-vector $ t \in \wedge ^ {p} V $,
its annihilator $ \mathop{\rm Ann} t = \{ {v \in V } : {t \wedge v = 0 } \} $
is a subspace of dimension $ \leq p $,
and the poly-vector $ t $
is pure if and only if $ \mathop{\rm dim} \mathop{\rm Ann} t = p $.
The pure $ p $-
vectors of an $ n $-
dimensional space $ V $
form an algebraic variety in $ \wedge ^ {p} V $;
the corresponding projective algebraic variety is a Grassmann manifold. Any non-zero $ n $-
vector or $ ( n- 1) $-
vector in an $ n $-
dimensional space $ V $
is pure, but a bivector $ t $
is pure if and only if $ t \wedge t = 0 $.
If $ v _ {1} \dots v _ {n} $
is a basis of $ V $
and $ x _ {i} = \sum_{j=1} ^ {n} x _ {i} ^ {j} v _ {j} $,
then the coordinates of the poly-vector $ t = x _ {1} \wedge \dots \wedge x _ {p} $
in the basis $ \{ {v _ {i _ {1} } \wedge \dots \wedge v _ {i _ {p} } } : {i _ {1} < \dots < i _ {p} } \} $
of the space $ \wedge ^ {p} V $
are the minors $ t ^ {i _ {1} \dots i _ {p} } = \mathop{\rm det} \| x _ {i} ^ {i _ {k} } \| $,
$ i _ {1} < \dots < i _ {p} $,
of the matrix $ \| x _ {i} ^ {j} \| $.
In particular, for $ p = n $,
$$
x _ {1} \wedge \dots \wedge x _ {n} = \
\mathop{\rm det} \| x _ {i} ^ {j} \| v _ {1} \wedge \dots \wedge v _ {n} .
$$
If one specifies a non-zero $ n $-
vector $ \omega \in \wedge ^ {n} V $,
a duality between $ p $-
vectors and $ ( n- p) $-
vectors is obtained, i.e. a natural isomorphism
$$
\pi : \wedge ^ {p} ( V) \rightarrow \
( \wedge ^ {n-p} V) ^ {*} \cong \wedge ^ {n-p} ( V ^ {*} )
$$
such that $ t \wedge u = \pi ( t)( u) \omega $
for all $ t \in \wedge ^ {p} V $
and $ u \in \wedge ^ {n-p} V $.
Let $ k = \mathbf R $
and let an inner product be defined in $ V $,
then in $ \wedge ^ {p} V $
an inner product is induced with the following property: For any orthonormal basis $ v _ {1} \dots v _ {n} $
in $ V $
the basis $ \{ {v _ {i _ {1} } \wedge \dots \wedge v _ {i _ {p} } } : {i _ {1} < \dots < i _ {p} } \} $
in $ \wedge ^ {p} V $
is also orthonormal. The scalar square
$$
( t, t) = \sum _ {i _ {1} < \dots < i _ {p} }
( t ^ {i _ {1} \dots i _ {p} } ) ^ {2}
$$
of a pure poly-vector $ t = x _ {1} \wedge \dots \wedge x _ {p} $
coincides with the square of the volume of the parallelopipedon in $ V $
constructed on the vectors $ x _ {1} \dots x _ {p} $.
If one specifies an orientation in the $ n $-
dimensional Euclidean space $ V $(
which is equivalent to choosing an $ n $-
vector $ \omega $
for which $ ( \omega , \omega ) = 1 $),
then the above duality leads to a natural isomorphism $ \gamma : \wedge ^ {p} V \rightarrow \wedge ^ {n-p} V $.
In particular, the $ ( n- 1) $-
vector $ t = x _ {1} \wedge \dots \wedge x _ {n-1} $
corresponds to a vector $ \gamma ( t) \in V $,
called the vector product of the vectors $ x _ {1} \dots x _ {n-1} $.
References
[1] | N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) |
[2] | A.I. Kostrikin, Yu.I. Manin, "Linear algebra and geometry" , Gordon & Breach (1989) (Translated from Russian) |
[3] | M.M. Postnikov, "Linear algebra and differential geometry" , Moscow (1979) (In Russian) |