Difference between revisions of "Christoffel numbers"
(Importing text file) |
m (fix tex) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | c0222001.png | ||
| + | $#A+1 = 25 n = 0 | ||
| + | $#C+1 = 25 : ~/encyclopedia/old_files/data/C022/C.0202200 Christoffel numbers, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''Christoffel coefficients'' | ''Christoffel coefficients'' | ||
| − | The coefficients | + | The coefficients $ \lambda _ {k} $ |
| + | of a quadrature formula | ||
| − | + | $$ | |
| + | \int\limits _ { a } ^ { b } | ||
| + | f ( x) d \alpha ( x) \approx \ | ||
| + | \sum _ {k = 1 } ^ { n } | ||
| + | \lambda _ {k} f ( x _ {k} ), | ||
| + | $$ | ||
| − | which is exact for algebraic polynomials of degrees | + | which is exact for algebraic polynomials of degrees $ \leq 2n - 1 $. |
| + | The interpolation nodes $ x _ {k} $ | ||
| + | of such a formula are the zeros of a polynomial $ p _ {n} ( x) $ | ||
| + | of degree $ n $ | ||
| + | which is orthogonal on $ [ a, b] $ | ||
| + | relative to the distribution $ d \alpha ( x) $ | ||
| + | to all polynomials of degree $ n - 1 $; | ||
| + | if $ x _ {1} < \dots < x _ {n} $, | ||
| + | the Christoffel numbers are uniquely determined. One has $ \lambda _ {k} > 0 $, | ||
| + | $ \sum _ {k = 1 } ^ {n} \lambda _ {k} = \alpha ( b) - \alpha ( a) $ | ||
| + | and | ||
| − | + | $$ | |
| + | \lambda _ {k} = \ | ||
| + | \int\limits _ { a } ^ { b } | ||
| + | \left [ | ||
| − | + | \frac{p _ {n} ( x) }{p _ {n} ^ \prime ( x) ( x - x _ {k} ) } | |
| − | + | \right ] ^ {2} d \alpha ( x),\ \ | |
| + | k = 1 \dots n. | ||
| + | $$ | ||
| − | + | If the polynomials $ p _ {n} ( x) $ | |
| + | are orthonormal, the Christoffel numbers may be expressed as | ||
| − | + | $$ | |
| + | \lambda _ {k} ^ {-1} = \ | ||
| + | p _ {0} ( x _ {k} ) | ||
| + | + \dots + p _ {n} ( x _ {k} ),\ \ | ||
| + | k = 1 \dots n, | ||
| + | $$ | ||
| − | + | $$ | |
| + | \lambda _ {k} = - | ||
| + | \frac{K _ {n + 1 } }{K _ {n} } | ||
| + | |||
| + | \frac{1}{p _ {n + 1 } ( x _ {k} ) p _ {n} ^ \prime ( x _ {k} ) } | ||
| + | = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| − | These expressions are due to E.B. Christoffel [[#References|[1]]]. For | + | \frac{K _ {n} }{K _ {n - 1 } } |
| + | |||
| + | \frac{1}{p _ {n | ||
| + | - 1 } ( x _ {k} ) p _ {n} ^ \prime ( x _ {k} ) } | ||
| + | ,\ k = 1 \dots n, | ||
| + | $$ | ||
| + | |||
| + | where $ K _ {n} $ | ||
| + | is the leading coefficient of $ p _ {n} ( x) $. | ||
| + | In the case $ a = - 1 $, | ||
| + | $ b = 1 $ | ||
| + | and $ d \alpha ( x) = dx $, | ||
| + | the $ p _ {n} ( x) $ | ||
| + | are the [[Legendre polynomials|Legendre polynomials]], and | ||
| + | |||
| + | $$ | ||
| + | \lambda _ {k} = \ | ||
| + | |||
| + | \frac{2}{( 1 - x _ {k} ^ {2} ) | ||
| + | [ p _ {n} ^ \prime ( x _ {k} )] ^ {2} } | ||
| + | . | ||
| + | $$ | ||
| + | |||
| + | These expressions are due to E.B. Christoffel [[#References|[1]]]. For $ n = 1 \dots 7 $ | ||
| + | they were evaluated by C.F. Gauss. See also [[Gauss quadrature formula|Gauss quadrature formula]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.B. Christoffel, "Ueber die Gaussche Quadratur und eine Verallgemeinerung derselben" ''J. Reine Angew. Math.'' , '''55''' (1858) pp. 61–82</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.B. Christoffel, "Ueber die Gaussche Quadratur und eine Verallgemeinerung derselben" ''J. Reine Angew. Math.'' , '''55''' (1858) pp. 61–82</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Constructive function theory" , '''1–3''' , F. Ungar (1964–1965) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974)</TD></TR></table> | ||
Latest revision as of 12:57, 19 December 2020
Christoffel coefficients
The coefficients $ \lambda _ {k} $ of a quadrature formula
$$ \int\limits _ { a } ^ { b } f ( x) d \alpha ( x) \approx \ \sum _ {k = 1 } ^ { n } \lambda _ {k} f ( x _ {k} ), $$
which is exact for algebraic polynomials of degrees $ \leq 2n - 1 $. The interpolation nodes $ x _ {k} $ of such a formula are the zeros of a polynomial $ p _ {n} ( x) $ of degree $ n $ which is orthogonal on $ [ a, b] $ relative to the distribution $ d \alpha ( x) $ to all polynomials of degree $ n - 1 $; if $ x _ {1} < \dots < x _ {n} $, the Christoffel numbers are uniquely determined. One has $ \lambda _ {k} > 0 $, $ \sum _ {k = 1 } ^ {n} \lambda _ {k} = \alpha ( b) - \alpha ( a) $ and
$$ \lambda _ {k} = \ \int\limits _ { a } ^ { b } \left [ \frac{p _ {n} ( x) }{p _ {n} ^ \prime ( x) ( x - x _ {k} ) } \right ] ^ {2} d \alpha ( x),\ \ k = 1 \dots n. $$
If the polynomials $ p _ {n} ( x) $ are orthonormal, the Christoffel numbers may be expressed as
$$ \lambda _ {k} ^ {-1} = \ p _ {0} ( x _ {k} ) + \dots + p _ {n} ( x _ {k} ),\ \ k = 1 \dots n, $$
$$ \lambda _ {k} = - \frac{K _ {n + 1 } }{K _ {n} } \frac{1}{p _ {n + 1 } ( x _ {k} ) p _ {n} ^ \prime ( x _ {k} ) } = $$
$$ = \ \frac{K _ {n} }{K _ {n - 1 } } \frac{1}{p _ {n - 1 } ( x _ {k} ) p _ {n} ^ \prime ( x _ {k} ) } ,\ k = 1 \dots n, $$
where $ K _ {n} $ is the leading coefficient of $ p _ {n} ( x) $. In the case $ a = - 1 $, $ b = 1 $ and $ d \alpha ( x) = dx $, the $ p _ {n} ( x) $ are the Legendre polynomials, and
$$ \lambda _ {k} = \ \frac{2}{( 1 - x _ {k} ^ {2} ) [ p _ {n} ^ \prime ( x _ {k} )] ^ {2} } . $$
These expressions are due to E.B. Christoffel [1]. For $ n = 1 \dots 7 $ they were evaluated by C.F. Gauss. See also Gauss quadrature formula.
References
| [1] | E.B. Christoffel, "Ueber die Gaussche Quadratur und eine Verallgemeinerung derselben" J. Reine Angew. Math. , 55 (1858) pp. 61–82 |
| [2] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
| [3] | I.P. Natanson, "Constructive function theory" , 1–3 , F. Ungar (1964–1965) (Translated from Russian) |
Comments
References
| [a1] | F.B. Hildebrand, "Introduction to numerical analysis" , McGraw-Hill (1974) |
Christoffel numbers. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Christoffel_numbers&oldid=16928