|
|
(9 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433102.png" />-function'' | + | ''$\Gamma$-function'' |
| | | |
− | A transcendental function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433103.png" /> that extends the values of the factorial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433104.png" /> to any complex number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433105.png" />. It was introduced in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite product
| + | {{MSC|33B15|33B20,33D05}} |
| + | {{TEX|done}} |
| + | $ |
| + | \newcommand{\abs}[1]{\left|#1\right|} |
| + | \newcommand{\Re}{\mathop{\mathrm{Re}}} |
| + | \newcommand{\Im}{\mathop{\mathrm{Im}}} |
| + | $ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433106.png" /></td> </tr></table>
| + | A transcendental function $\Gamma(z)$ that extends the values of the factorial $z!$ to any complex number $z$ (one writes $\Gamma(z) = (z-1)!$). It was introduced in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite product |
| + | $$ |
| + | \Gamma(z) = |
| + | \lim_{n\rightarrow\infty}\frac{n!n^z}{z(z+1)\ldots(z+n)} = |
| + | \lim_{n\rightarrow\infty}\frac{n^z}{z(1+z/2)\ldots(1+z/n)}, |
| + | $$ |
| + | which was used by L. Euler to obtain the integral representation (Euler integral of the second kind, cf. [[Euler integrals]]) |
| + | $$ |
| + | \Gamma(z) = \int_0^\infty x^{z-1}e^{-x} \rd x, |
| + | $$ |
| + | which is valid for $\Re z > 0$. The multi-valuedness of the function $x^{z-1}$ is eliminated by the formula $x^{z-1}=e^{(z-1)\ln x}$ with a real $\ln x$. The symbol $\Gamma(z)$ and the name gamma-function were proposed in 1814 by A.M. Legendre. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433107.png" /></td> </tr></table> | + | If $\Re z < 0$ and $-k-1 < \Re z < -k$, $k=0,1,\ldots$, the gamma-function may be represented by the Cauchy–Saalschütz integral: |
| + | $$ |
| + | \Gamma(z) = \int_0^\infty x^{z-1} |
| + | \left( |
| + | e^{-x} - \sum_{m=0}^k (-1)^m \frac{x^m}{m!} |
| + | \right) \rd x. |
| + | $$ |
| + | In the entire plane punctured at the points $z=0,-1,\ldots $, the gamma-function satisfies a Hankel integral representation: |
| + | \begin{equation} |
| + | \label{eq1} |
| + | \Gamma(z) = \frac{1}{e^{2\pi iz} - 1} \int_C s^{z-1}e^{-s} \rd s, |
| + | \end{equation} |
| + | where $s^{z-1} = e^{(z-1)\ln s}$ and $\ln s$ is the branch of the logarithm for which $0 < \arg\ln s < 2\pi$; the contour $C$ is represented in [[#Fig1|Figure 1]]. It is seen from the Hankel representation that $\Gamma(z)$ is a [[Meromorphic function|meromorphic function]]. At the points $z_n = -n$, $n=0,1,\ldots$ it has simple poles with residues $(-1)^n/n!$. |
| | | |
− | which was used by L. Euler to obtain the integral representation (Euler integral of the second kind, cf. [[Euler integrals|Euler integrals]])
| + | <span id="Fig1"> |
− | | + | [[File:Gamma-function-1.png| center| frame| Figure 1. The contour of integration $C$ of equation \ref{eq1} ([[Media:Gamma-function-1.pdf|pdf]]) ]] |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433108.png" /></td> </tr></table> | + | </span> |
− | | |
− | which is valid for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g0433109.png" />. The multi-valuedness of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331010.png" /> is eliminated by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331011.png" /> with a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331012.png" />. The symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331013.png" /> and the name gamma-function were proposed in 1814 by A.M. Legendre.
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331016.png" /> the gamma-function may be represented by the Cauchy–Saalschütz integral:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331017.png" /></td> </tr></table>
| |
− | | |
− | In the entire plane punctured at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331018.png" /> the gamma-function satisfies a Hankel integral representation:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331019.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331021.png" /> is the branch of the logarithm for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331022.png" />; the contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331023.png" /> is represented in Fig. a. It is seen from the Hankel representation that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331024.png" /> is a [[Meromorphic function|meromorphic function]]. At the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331026.png" /> it has simple poles with residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331027.png" />.
| |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310a.gif" /> | |
− | | |
− | Figure: g043310a
| |
| | | |
| ==Fundamental relations and properties of the gamma-function.== | | ==Fundamental relations and properties of the gamma-function.== |
− |
| |
| | | |
| 1) Euler's functional equation: | | 1) Euler's functional equation: |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331028.png" /></td> </tr></table>
| + | z\Gamma(z) = \Gamma(z+1), |
− | | + | $$ |
| or | | or |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331029.png" /></td> </tr></table>
| + | \Gamma(z) = \frac{1}{z\ldots(z+n)}\Gamma(z+n+1); |
− | | + | $$ |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331031.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331032.png" /> is an integer; it is assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331033.png" />.
| + | $\Gamma(1)=1$, $\Gamma(n+1) = n!$ if $n$ is an integer; it is assumed that $0! = \Gamma(1) = 1$. |
| | | |
| 2) Euler's completion formula: | | 2) Euler's completion formula: |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331034.png" /></td> </tr></table>
| + | \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}. |
− | | + | $$ |
− | In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331035.png" />; | + | In particular, $\Gamma(1/2)=\sqrt{\pi}$; |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331036.png" /></td> </tr></table>
| + | \Gamma\left(n+\frac{1}{2}\right) = |
− | | + | \frac{1.3\ldots(2n-1)}{2^n}\sqrt{\pi} |
− | if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331037.png" /> is an integer; | + | $$ |
− | | + | if $n>0$ is an integer; |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331038.png" /></td> </tr></table>
| + | $$ |
| + | \abs{\Gamma\left(\frac{1}{2} + iy\right)}^2 = |
| + | \frac{\pi}{\cosh y\pi}, |
| + | $$ |
| + | where $y$ is real. |
| | | |
| 3) Gauss' multiplication formula: | | 3) Gauss' multiplication formula: |
| + | $$ |
| + | \prod_{k=0}^{m-1} \Gamma\left( z + \frac{k}{m} \right) = |
| + | (2\pi)^{(m-1)/2}m^{(1/2)-mz}\Gamma(mz), \quad m = 2,3,\ldots |
| + | $$ |
| + | If $m=2$, this is the Legendre duplication formula. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331039.png" /></td> </tr></table>
| + | 4) If $\Re z \geq \delta > 0$ or $\abs{\Im z} \geq \delta > 0$, then $\ln\Gamma(z)$ can be asymptotically expanded into the Stirling series: |
− | | + | $$ |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331040.png" />, this is the Legendre duplication formula.
| + | \ln\Gamma(z) |
− | | + | = \left(z-\frac{1}{2}\right)\ln z |
− | 4) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331041.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331042.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331043.png" /> can be asymptotically expanded into the Stirling series: | + | - z |
− | | + | + \frac{1}{2}\ln 2\pi |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331044.png" /></td> </tr></table>
| + | + \sum_{n=1}^m \frac{B_{2n}}{2n(2n-1)z^{2n-1}} |
− | | + | + O\bigl(z^{-2m-1}\bigr), \quad m = 1,2,\ldots, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331045.png" /></td> </tr></table>
| + | $$ |
− | | + | where $B_{2n}$ are the [[Bernoulli numbers]]. It implies the equality |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331046.png" /> are the [[Bernoulli numbers|Bernoulli numbers]]. It implies the equality | + | $$ |
− | | + | \Gamma(z) = \sqrt{2\pi} z^{z-1/2} z^{-z} |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331047.png" /></td> </tr></table>
| + | \left( |
− | | + | 1 |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331048.png" /></td> </tr></table>
| + | + \frac{1}{12}z^{-1} |
− | | + | + \frac{1}{288}z^{-2} |
| + | - \frac{139}{51840}z^{-3} |
| + | - \frac{571}{2488320}z^{-4} |
| + | + O\bigl(z^{-5}\bigr) |
| + | \right). |
| + | $$ |
| In particular, | | In particular, |
| + | $$ |
| + | \Gamma(1+x) = \sqrt{2\pi} x^{x+1/2} e^{-x + \theta/12x}, |
| + | \quad 0 < \theta < 1. |
| + | $$ |
| + | More accurate is Sonin's formula {{Cite|So}}: |
| + | $$ |
| + | \Gamma(1+x) = \sqrt{2\pi} x^{x+1/2} e^{-x + 1/12(x+\theta)}, |
| + | \quad 0 < \theta < 1/2. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331049.png" /></td> </tr></table> | + | <span id="Fig2"> |
− | | + | [[File:Gamma-function-2.png| right| frame| Figure 2. The gamma function on the real line ([[Media:Gamma-function-2.pdf|pdf]]) ]] |
− | More accurate is Sonin's formula [[#References|[6]]]:
| + | </span> |
− | | + | 5) In the real |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331050.png" /></td> </tr></table>
| + | domain, $\Gamma(x) > 0$ for $x > 0$ and it assumes the sign $(-1)^{k+1}$ on the segments $-k-1 < x < -k$, $k = 0,1,\ldots$ ([[#Fig2|Figure 2]]). |
− | | |
− | 5) In the real domain, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331051.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331052.png" /> and it assumes the sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331053.png" /> on the segments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331055.png" /> (Fig. b). | |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310b.gif" />
| |
| | | |
− | Figure: g043310b
| + | For all real $x$ the inequality |
| + | $$ |
| + | \Gamma\Gamma^{\prime\prime} > \bigl(\Gamma^\prime\bigr)^2 \geq 0 |
| + | $$ |
| + | is valid, i.e. all branches of both $\abs{\Gamma(x)}$ and $\ln\abs{\Gamma(x)}$ are convex functions. The property of logarithmic convexity defines the gamma-function among all solutions of the functional equation |
| + | $$ |
| + | \Gamma(1+x) = x\Gamma(x) |
| + | $$ |
| + | up to a constant factor (see also the |
| + | [[Bohr-Mollerup theorem|Bohr–Mollerup theorem]]). |
| | | |
− | The graph of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331056.png" />.
| + | For positive values of $x$ the gamma-function has a unique minimum at $x=1.4616321\ldots$ equal to $0.885603\ldots$. The local minima of the function $\abs{\Gamma(x)}$ form a sequence tending to zero as $x\rightarrow -\infty$. |
| | | |
− | For all real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331057.png" /> the inequality
| + | 6) In the complex domain, if $\Re z > 0$, the gamma-function rapidly decreases as $\abs{\Im z} \rightarrow \infty$, |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331058.png" /></td> </tr></table>
| + | \lim_{\abs{\Im z} \rightarrow \infty} |
− | | + | \abs{\Gamma(z)}\abs{\Im z}^{(1/2)-\Re z}e^{\pi\abs{\Im z}/2} = |
− | is valid, i.e. all branches of both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331059.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331060.png" /> are convex functions. The property of logarithmic convexity defines the gamma-function among all solutions of the functional equation
| + | \sqrt{2\pi}. |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331061.png" /></td> </tr></table>
| |
− | | |
− | up to a constant factor.
| |
− | | |
− | For positive values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331062.png" /> the gamma-function has a unique minimum at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331063.png" /> equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331064.png" />. The local minima of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331065.png" /> form a sequence tending to zero as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331066.png" />.
| |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310c.gif" />
| |
− | | |
− | Figure: g043310c
| |
− | | |
− | The graph of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331067.png" />.
| |
− | | |
− | 6) In the complex domain, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331068.png" />, the gamma-function rapidly decreases as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331069.png" />, | |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331070.png" /></td> </tr></table>
| |
− | | |
− | 7) The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331071.png" /> (Fig. c) is an entire function of order one and of maximal type; asymptotically, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331072.png" />,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331073.png" /></td> </tr></table>
| |
| | | |
| + | <span id="Fig3"> |
| + | [[File:Gamma-function-3.png| right| frame| Figure 3. The function $1/\Gamma(x)$ on the real line ([[Media:Gamma-function-3.pdf|pdf]]) ]] |
| + | </span> |
| + | 7) The function $1/\Gamma(z)$ ([[#Fig3|Figure 3]]) is an [[Entire function|entire function]] of order one and of maximal type; asymptotically, as $r \rightarrow \infty$, |
| + | $$ |
| + | \ln M(r) \sim r \ln r, |
| + | $$ |
| where | | where |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331074.png" /></td> </tr></table>
| + | M(r) = \max_{\abs{z} = r} \frac{1}{\abs{\Gamma(z)}}. |
− | | + | $$ |
| It can be represented by the infinite Weierstrass product: | | It can be represented by the infinite Weierstrass product: |
| + | $$ |
| + | \frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty |
| + | \left(\left( 1 + \frac{z}{n} \right) e^{-z/n} \right), |
| + | $$ |
| + | which converges absolutely and uniformly on any compact set in the complex plane ($\gamma$ is the [[Euler constant]]). A Hankel integral representation is valid: |
| + | \begin{equation} |
| + | \label{eq2} |
| + | \frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{C'} e^s s^{-z} \rd s, |
| + | \end{equation} |
| + | where the contour $C'$ is shown in [[#Fig4|Figure 4]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331075.png" /></td> </tr></table> | + | <span id="Fig4"> |
− | | + | [[File:Gamma-function-4.png| center| frame| Figure 4. The contour of integration $C'$ of equation \ref{eq2} ([[Media:Gamma-function-4.pdf|pdf]]) ]] |
− | which converges absolutely and uniformly on any compact set in the complex plane (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331076.png" /> is the [[Euler constant|Euler constant]]). A Hankel integral representation is valid:
| + | </span> |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331077.png" /></td> </tr></table>
| |
| | | |
− | where the contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331078.png" /> is shown in Fig. d.
| + | G.F. Voronoi {{Cite|Vo}} obtained integral representations for powers of the gamma-function. |
− | | |
− | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/g043310d.gif" />
| |
− | | |
− | Figure: g043310d
| |
− | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331079.png" />
| |
− | | |
− | G.F. Voronoi [[#References|[7]]] obtained integral representations for powers of the gamma-function. | |
− | | |
− | In applications, the so-called poly gamma-functions — <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331080.png" />-th derivatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331081.png" /> — are of importance. The function (Gauss' <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331083.png" />-function)
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331084.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331085.png" /></td> </tr></table>
| |
− | | |
− | is meromorphic, has simple poles at the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331086.png" /> and satisfies the functional equation
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331087.png" /></td> </tr></table>
| |
− | | |
− | The representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331088.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331089.png" /> yields the formula
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331090.png" /></td> </tr></table>
| |
| | | |
| + | In applications, the so-called poly-gamma functions — $k$th derivatives of $\ln\Gamma(z)$ — are of importance. The function (Gauss' $\psi$-function) |
| + | $$ |
| + | \psi(z) = |
| + | \frac{\mathrm{d}}{\mathrm{d}z}\ln\Gamma(z) = |
| + | \frac{\Gamma'(z)}{\Gamma(z)} = |
| + | -\gamma + \sum_{n=0}^\infty \frac{z-1}{(n+1)(z+n)} = |
| + | -\gamma + \int_0^1 \frac{1 - (1-t)^{z-1}}{t} \rd t |
| + | $$ |
| + | is meromorphic, has simple poles at the points $z=0,-1,\ldots$ and satisfies the functional equation |
| + | $$ |
| + | \psi(z+1) - \psi(z) = \frac{1}{z}. |
| + | $$ |
| + | The representation of $\psi(z)$ for $\abs{z}<1$ yields the formula |
| + | $$ |
| + | \ln\Gamma(1+z) = |
| + | -\gamma z + \sum_{k=2}^\infty \frac{(-1)^k S_k}{k} z^k, |
| + | $$ |
| where | | where |
| + | $$ |
| + | S_k = \sum_{n=1}^\infty n^{-k}. |
| + | $$ |
| + | This formula may be used to compute $\Gamma(z)$ in a neighbourhood of the point $z=1$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331091.png" /></td> </tr></table>
| + | For other poly gamma-functions see {{Cite|BaEr}}. The [[Incomplete gamma-function|incomplete gamma-function]] is defined by the equation |
− | | + | $$ |
− | This formula may be used to compute <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331092.png" /> in a neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331093.png" />.
| + | I(x,y) = \int_0^y e^{-t}t^{x-1} \rd t. |
− | | + | $$ |
− | For other poly gamma-functions see [[#References|[2]]]. The [[Incomplete gamma-function|incomplete gamma-function]] is defined by the equation | + | The functions $\Gamma(z)$ and $\psi(z)$ are transcendental functions which do not satisfy any linear differential equation with rational coefficients (Hölder's theorem). |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331094.png" /></td> </tr></table>
| |
− | | |
− | The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331095.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331096.png" /> are transcendental functions which do not satisfy any linear differential equation with rational coefficients (Hölder's theorem). | |
− | | |
− | The exceptional importance of the gamma-function in mathematical analysis is due to the fact that it can be used to express a large number of definite integrals, infinite products and sums of series (see, for example, [[Beta-function|Beta-function]]). In addition, it is widely used in the theory of special functions (the [[Hypergeometric function|hypergeometric function]], of which the gamma-function is a limit case, [[Cylinder functions|cylinder functions]], etc.), in analytic number theory, etc.
| |
| | | |
− | ====References====
| + | The exceptional importance of the gamma-function in mathematical analysis is due to the fact that it can be used to express a large number of definite integrals, infinite products and sums of series (for example, the [[Beta-function|beta-function]]). In addition, it is widely used in the theory of special functions (the [[Hypergeometric function|hypergeometric function]], of which the gamma-function is a limit case, [[Cylinder functions|cylinder functions]], etc.), in analytic number theory, etc. |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''1. The gamma function. The hypergeometric functions. Legendre functions''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Math. anal., functions, limits, series, continued fractions'' , ''Handbook Math. Libraries'' , Moscow (1961) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N. Nielsen, "Handbuch der Theorie der Gammafunktion" , Chelsea, reprint (1965)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> N.Ya. Sonin, "Studies on cylinder functions and special polynomials" , Moscow (1954) (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> G.F. Voronoi, "Studies of primitive parallelotopes" , ''Collected works'' , '''2''' , Kiev (1952) pp. 239–368 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> E. Jahnke, F. Emde, "Tables of functions with formulae and curves" , Dover, reprint (1945) (Translated from German)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> A. Angot, "Compléments de mathématiques. A l'usage des ingénieurs de l'electrotechnique et des télécommunications" , C.N.E.T. (1957)</TD></TR></table>
| |
| | | |
| + | ====References==== |
| | | |
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|An}}||valign="top"| A. Angot, "Compléments de mathématiques. A l'usage des ingénieurs de l'electrotechnique et des télécommunications", C.N.E.T. (1957) |
| + | |- |
| + | |valign="top"|{{Ref|BaEr}}||valign="top"| H. Bateman (ed.) A. Erdélyi (ed.), ''Higher transcendental functions'', '''1. The gamma function. The hypergeometric functions. Legendre functions''', McGraw-Hill (1953) |
| + | |- |
| + | |valign="top"|{{Ref|Bo}}||valign="top"| N. Bourbaki, "Elements of mathematics. Functions of a real variable", Addison-Wesley (1976) (Translated from French) |
| + | |- |
| + | |valign="top"|{{Ref|JaEm}}||valign="top"| E. Jahnke, F. Emde, "Tables of functions with formulae and curves", Dover, reprint (1945) (Translated from German) |
| + | |- |
| + | |valign="top"|{{Ref|Ni}}||valign="top"| N. Nielsen, "Handbuch der Theorie der Gammafunktion", Chelsea, reprint (1965) |
| + | |- |
| + | |valign="top"|{{Ref|So}}||valign="top"| N.Ya. Sonin, "Studies on cylinder functions and special polynomials", Moscow (1954) (In Russian) |
| + | |- |
| + | |valign="top"|{{Ref|Vo}}||valign="top"| G.F. Voronoi, "Studies of primitive parallelotopes", ''Collected works'', '''2''', Kiev (1952) pp. 239–368 (In Russian) |
| + | |- |
| + | |valign="top"|{{Ref|WhWa}}||valign="top"| E.T. Whittaker, G.N. Watson, "A course of modern analysis", Cambridge Univ. Press (1952) |
| + | |- |
| + | |} |
| | | |
− | ====Comments==== | + | ====Comments==== |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331098.png" />-analogue of the gamma-function is given by
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g04331099.png" /></td> </tr></table>
| + | For an approach to the gamma-function based on the [[Bohr-Mollerup theorem|Bohr–Mollerup]] characterization, see the short monograph by E. Artin {{Cite|Ar}}. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g043310100.png" /></td> </tr></table>
| + | The $q$-analogue of the gamma-function is given by |
| + | $$ |
| + | \Gamma_q(z) = (1-q)^{1-z} |
| + | \prod_{k=1}^\infty \frac{1-q^{k+1}}{1-q^{k+z}}, \quad |
| + | z \neq 0,-1,-2,\ldots;\quad 0<q<1, |
| + | $$ |
| + | cf. {{Cite|As}}. Its origin goes back to E. Heine (1847) and D. Jackson (1904). |
| | | |
− | cf. [[#References|[a2]]]. Its origin goes back to E. Heine (1847) and D. Jackson (1904). For the gamma-function see also [[#References|[a1]]].
| + | ====References==== |
| | | |
− | ====References====
| + | {| |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Artin, "The gamma function" , Holt, Rinehart & Winston (1964)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Askey, "The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g043310101.png" />-Gamma and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g043/g043310/g043310102.png" />-Beta functions" ''Appl. Anal.'' , '''8''' (1978) pp. 125–141</TD></TR></table>
| + | |- |
| + | |valign="top"|{{Ref|Ar}}||valign="top"| E. Artin, "The gamma function", Holt, Rinehart & Winston (1964) |
| + | |- |
| + | |valign="top"|{{Ref|As}}||valign="top"| R. Askey, "The $q$-Gamma and $q$-Beta functions" ''Appl. Anal.'', '''8''' (1978) pp. 125–141 |
| + | |- |
| + | |} |
$\Gamma$-function
2020 Mathematics Subject Classification: Primary: 33B15 Secondary: 33B2033D05 [MSN][ZBL]
$
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\Re}{\mathop{\mathrm{Re}}}
\newcommand{\Im}{\mathop{\mathrm{Im}}}
$
A transcendental function $\Gamma(z)$ that extends the values of the factorial $z!$ to any complex number $z$ (one writes $\Gamma(z) = (z-1)!$). It was introduced in 1729 by L. Euler in a letter to Ch. Goldbach, using the infinite product
$$
\Gamma(z) =
\lim_{n\rightarrow\infty}\frac{n!n^z}{z(z+1)\ldots(z+n)} =
\lim_{n\rightarrow\infty}\frac{n^z}{z(1+z/2)\ldots(1+z/n)},
$$
which was used by L. Euler to obtain the integral representation (Euler integral of the second kind, cf. Euler integrals)
$$
\Gamma(z) = \int_0^\infty x^{z-1}e^{-x} \rd x,
$$
which is valid for $\Re z > 0$. The multi-valuedness of the function $x^{z-1}$ is eliminated by the formula $x^{z-1}=e^{(z-1)\ln x}$ with a real $\ln x$. The symbol $\Gamma(z)$ and the name gamma-function were proposed in 1814 by A.M. Legendre.
If $\Re z < 0$ and $-k-1 < \Re z < -k$, $k=0,1,\ldots$, the gamma-function may be represented by the Cauchy–Saalschütz integral:
$$
\Gamma(z) = \int_0^\infty x^{z-1}
\left(
e^{-x} - \sum_{m=0}^k (-1)^m \frac{x^m}{m!}
\right) \rd x.
$$
In the entire plane punctured at the points $z=0,-1,\ldots $, the gamma-function satisfies a Hankel integral representation:
\begin{equation}
\label{eq1}
\Gamma(z) = \frac{1}{e^{2\pi iz} - 1} \int_C s^{z-1}e^{-s} \rd s,
\end{equation}
where $s^{z-1} = e^{(z-1)\ln s}$ and $\ln s$ is the branch of the logarithm for which $0 < \arg\ln s < 2\pi$; the contour $C$ is represented in Figure 1. It is seen from the Hankel representation that $\Gamma(z)$ is a meromorphic function. At the points $z_n = -n$, $n=0,1,\ldots$ it has simple poles with residues $(-1)^n/n!$.
Figure 1. The contour of integration $C$ of equation \ref{eq1} (
pdf)
Fundamental relations and properties of the gamma-function.
1) Euler's functional equation:
$$
z\Gamma(z) = \Gamma(z+1),
$$
or
$$
\Gamma(z) = \frac{1}{z\ldots(z+n)}\Gamma(z+n+1);
$$
$\Gamma(1)=1$, $\Gamma(n+1) = n!$ if $n$ is an integer; it is assumed that $0! = \Gamma(1) = 1$.
2) Euler's completion formula:
$$
\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.
$$
In particular, $\Gamma(1/2)=\sqrt{\pi}$;
$$
\Gamma\left(n+\frac{1}{2}\right) =
\frac{1.3\ldots(2n-1)}{2^n}\sqrt{\pi}
$$
if $n>0$ is an integer;
$$
\abs{\Gamma\left(\frac{1}{2} + iy\right)}^2 =
\frac{\pi}{\cosh y\pi},
$$
where $y$ is real.
3) Gauss' multiplication formula:
$$
\prod_{k=0}^{m-1} \Gamma\left( z + \frac{k}{m} \right) =
(2\pi)^{(m-1)/2}m^{(1/2)-mz}\Gamma(mz), \quad m = 2,3,\ldots
$$
If $m=2$, this is the Legendre duplication formula.
4) If $\Re z \geq \delta > 0$ or $\abs{\Im z} \geq \delta > 0$, then $\ln\Gamma(z)$ can be asymptotically expanded into the Stirling series:
$$
\ln\Gamma(z)
= \left(z-\frac{1}{2}\right)\ln z
- z
+ \frac{1}{2}\ln 2\pi
+ \sum_{n=1}^m \frac{B_{2n}}{2n(2n-1)z^{2n-1}}
+ O\bigl(z^{-2m-1}\bigr), \quad m = 1,2,\ldots,
$$
where $B_{2n}$ are the Bernoulli numbers. It implies the equality
$$
\Gamma(z) = \sqrt{2\pi} z^{z-1/2} z^{-z}
\left(
1
+ \frac{1}{12}z^{-1}
+ \frac{1}{288}z^{-2}
- \frac{139}{51840}z^{-3}
- \frac{571}{2488320}z^{-4}
+ O\bigl(z^{-5}\bigr)
\right).
$$
In particular,
$$
\Gamma(1+x) = \sqrt{2\pi} x^{x+1/2} e^{-x + \theta/12x},
\quad 0 < \theta < 1.
$$
More accurate is Sonin's formula [So]:
$$
\Gamma(1+x) = \sqrt{2\pi} x^{x+1/2} e^{-x + 1/12(x+\theta)},
\quad 0 < \theta < 1/2.
$$
Figure 2. The gamma function on the real line (
pdf)
5) In the real
domain, $\Gamma(x) > 0$ for $x > 0$ and it assumes the sign $(-1)^{k+1}$ on the segments $-k-1 < x < -k$, $k = 0,1,\ldots$ (Figure 2).
For all real $x$ the inequality
$$
\Gamma\Gamma^{\prime\prime} > \bigl(\Gamma^\prime\bigr)^2 \geq 0
$$
is valid, i.e. all branches of both $\abs{\Gamma(x)}$ and $\ln\abs{\Gamma(x)}$ are convex functions. The property of logarithmic convexity defines the gamma-function among all solutions of the functional equation
$$
\Gamma(1+x) = x\Gamma(x)
$$
up to a constant factor (see also the
Bohr–Mollerup theorem).
For positive values of $x$ the gamma-function has a unique minimum at $x=1.4616321\ldots$ equal to $0.885603\ldots$. The local minima of the function $\abs{\Gamma(x)}$ form a sequence tending to zero as $x\rightarrow -\infty$.
6) In the complex domain, if $\Re z > 0$, the gamma-function rapidly decreases as $\abs{\Im z} \rightarrow \infty$,
$$
\lim_{\abs{\Im z} \rightarrow \infty}
\abs{\Gamma(z)}\abs{\Im z}^{(1/2)-\Re z}e^{\pi\abs{\Im z}/2} =
\sqrt{2\pi}.
$$
Figure 3. The function $1/\Gamma(x)$ on the real line (
pdf)
7) The function $1/\Gamma(z)$ (Figure 3) is an entire function of order one and of maximal type; asymptotically, as $r \rightarrow \infty$,
$$
\ln M(r) \sim r \ln r,
$$
where
$$
M(r) = \max_{\abs{z} = r} \frac{1}{\abs{\Gamma(z)}}.
$$
It can be represented by the infinite Weierstrass product:
$$
\frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty
\left(\left( 1 + \frac{z}{n} \right) e^{-z/n} \right),
$$
which converges absolutely and uniformly on any compact set in the complex plane ($\gamma$ is the Euler constant). A Hankel integral representation is valid:
\begin{equation}
\label{eq2}
\frac{1}{\Gamma(z)} = \frac{1}{2\pi i} \int_{C'} e^s s^{-z} \rd s,
\end{equation}
where the contour $C'$ is shown in Figure 4.
Figure 4. The contour of integration $C'$ of equation \ref{eq2} (
pdf)
G.F. Voronoi [Vo] obtained integral representations for powers of the gamma-function.
In applications, the so-called poly-gamma functions — $k$th derivatives of $\ln\Gamma(z)$ — are of importance. The function (Gauss' $\psi$-function)
$$
\psi(z) =
\frac{\mathrm{d}}{\mathrm{d}z}\ln\Gamma(z) =
\frac{\Gamma'(z)}{\Gamma(z)} =
-\gamma + \sum_{n=0}^\infty \frac{z-1}{(n+1)(z+n)} =
-\gamma + \int_0^1 \frac{1 - (1-t)^{z-1}}{t} \rd t
$$
is meromorphic, has simple poles at the points $z=0,-1,\ldots$ and satisfies the functional equation
$$
\psi(z+1) - \psi(z) = \frac{1}{z}.
$$
The representation of $\psi(z)$ for $\abs{z}<1$ yields the formula
$$
\ln\Gamma(1+z) =
-\gamma z + \sum_{k=2}^\infty \frac{(-1)^k S_k}{k} z^k,
$$
where
$$
S_k = \sum_{n=1}^\infty n^{-k}.
$$
This formula may be used to compute $\Gamma(z)$ in a neighbourhood of the point $z=1$.
For other poly gamma-functions see [BaEr]. The incomplete gamma-function is defined by the equation
$$
I(x,y) = \int_0^y e^{-t}t^{x-1} \rd t.
$$
The functions $\Gamma(z)$ and $\psi(z)$ are transcendental functions which do not satisfy any linear differential equation with rational coefficients (Hölder's theorem).
The exceptional importance of the gamma-function in mathematical analysis is due to the fact that it can be used to express a large number of definite integrals, infinite products and sums of series (for example, the beta-function). In addition, it is widely used in the theory of special functions (the hypergeometric function, of which the gamma-function is a limit case, cylinder functions, etc.), in analytic number theory, etc.
References
[An] |
A. Angot, "Compléments de mathématiques. A l'usage des ingénieurs de l'electrotechnique et des télécommunications", C.N.E.T. (1957)
|
[BaEr] |
H. Bateman (ed.) A. Erdélyi (ed.), Higher transcendental functions, 1. The gamma function. The hypergeometric functions. Legendre functions, McGraw-Hill (1953)
|
[Bo] |
N. Bourbaki, "Elements of mathematics. Functions of a real variable", Addison-Wesley (1976) (Translated from French)
|
[JaEm] |
E. Jahnke, F. Emde, "Tables of functions with formulae and curves", Dover, reprint (1945) (Translated from German)
|
[Ni] |
N. Nielsen, "Handbuch der Theorie der Gammafunktion", Chelsea, reprint (1965)
|
[So] |
N.Ya. Sonin, "Studies on cylinder functions and special polynomials", Moscow (1954) (In Russian)
|
[Vo] |
G.F. Voronoi, "Studies of primitive parallelotopes", Collected works, 2, Kiev (1952) pp. 239–368 (In Russian)
|
[WhWa] |
E.T. Whittaker, G.N. Watson, "A course of modern analysis", Cambridge Univ. Press (1952)
|
For an approach to the gamma-function based on the Bohr–Mollerup characterization, see the short monograph by E. Artin [Ar].
The $q$-analogue of the gamma-function is given by
$$
\Gamma_q(z) = (1-q)^{1-z}
\prod_{k=1}^\infty \frac{1-q^{k+1}}{1-q^{k+z}}, \quad
z \neq 0,-1,-2,\ldots;\quad 0<q<1,
$$
cf. [As]. Its origin goes back to E. Heine (1847) and D. Jackson (1904).
References
[Ar] |
E. Artin, "The gamma function", Holt, Rinehart & Winston (1964)
|
[As] |
R. Askey, "The $q$-Gamma and $q$-Beta functions" Appl. Anal., 8 (1978) pp. 125–141
|