|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935401.png" /> of a [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935402.png" /> into a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935403.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935404.png" /> is a finite extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935405.png" />) that sends an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935406.png" /> to the trace of the matrix (cf. [[Trace of a square matrix|Trace of a square matrix]]) of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935407.png" />-linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935408.png" /> sending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t0935409.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354010.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354011.png" /> is a [[Homomorphism|homomorphism]] of the additive groups.
| + | {{TEX|done}}{{MSC|12F}} |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354012.png" /> is a separable extension, then
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354013.png" /></td> </tr></table>
| |
− | | |
− | where the sum is taken over all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354014.png" />-isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354016.png" /> into an algebraic closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354018.png" />. The trace mapping is transitive, that is, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354020.png" /> are finite extensions, then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354021.png" />,
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354022.png" /></td> </tr></table>
| |
| | | |
| + | The mapping $\mathrm{Tr}_{K/k}$ of a [[field]] $K$ into a field $k$ (where $K$ is a finite extension of $k$) that sends an element $\alpha \in K$ to the trace of the matrix (cf. [[Trace of a square matrix]]) of the $k$-linear mapping $K \rightarrow K$ sending $\beta \in K$ to $\alpha \beta$. $\mathrm{Tr}_{K/k}$ is a [[homomorphism]] of the additive groups $K^+ \rightarrow k^+$. |
| | | |
| + | If $K/k$ is a [[separable extension]], then |
| + | $$ |
| + | \mathrm{Tr}_{K/k}(\alpha) = \sum_i \sigma_i(\alpha) |
| + | $$ |
| + | where the sum is taken over all $k$-isomorphisms $\sigma_i$ of $K$ into an algebraic closure $\bar k$ of $k$. The trace mapping is transitive, that is, if $L/K$ and $K/k$ are finite extensions, then for any $\alpha \in L$, |
| + | $$ |
| + | \mathrm{Tr}_{L/k}(\alpha) = \mathrm{Tr}_{K/k}(\mathrm{Tr}_{L/K}(\alpha)) \ . |
| + | $$ |
| | | |
| ====Comments==== | | ====Comments==== |
− | Especially in older mathematical literature, instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354023.png" /> one finds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t093/t093540/t09354024.png" /> (from the German "Spur" ) as notation for this mapping. | + | Especially in older mathematical literature, instead of $\mathrm{Tr}_{K/k}$ one finds $\mathrm{Sp}_{K/k}$ (from the German "Spur" ) as notation for this mapping. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Jacobson, "Lectures in abstract algebra" , '''3. Theory of fields and Galois theory''' , Springer, reprint (1975)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Jacobson, "Basic algebra" , '''1''' , Freeman (1985)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1965)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Jacobson, "Lectures in abstract algebra" , '''3. Theory of fields and Galois theory''' , Springer, reprint (1975)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Jacobson, "Basic algebra" , '''1''' , Freeman (1985)</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1965)</TD></TR> |
| + | </table> |
Latest revision as of 21:24, 22 December 2014
2020 Mathematics Subject Classification: Primary: 12F [MSN][ZBL]
The mapping $\mathrm{Tr}_{K/k}$ of a field $K$ into a field $k$ (where $K$ is a finite extension of $k$) that sends an element $\alpha \in K$ to the trace of the matrix (cf. Trace of a square matrix) of the $k$-linear mapping $K \rightarrow K$ sending $\beta \in K$ to $\alpha \beta$. $\mathrm{Tr}_{K/k}$ is a homomorphism of the additive groups $K^+ \rightarrow k^+$.
If $K/k$ is a separable extension, then
$$
\mathrm{Tr}_{K/k}(\alpha) = \sum_i \sigma_i(\alpha)
$$
where the sum is taken over all $k$-isomorphisms $\sigma_i$ of $K$ into an algebraic closure $\bar k$ of $k$. The trace mapping is transitive, that is, if $L/K$ and $K/k$ are finite extensions, then for any $\alpha \in L$,
$$
\mathrm{Tr}_{L/k}(\alpha) = \mathrm{Tr}_{K/k}(\mathrm{Tr}_{L/K}(\alpha)) \ .
$$
Especially in older mathematical literature, instead of $\mathrm{Tr}_{K/k}$ one finds $\mathrm{Sp}_{K/k}$ (from the German "Spur" ) as notation for this mapping.
References
[a1] | N. Jacobson, "Lectures in abstract algebra" , 3. Theory of fields and Galois theory , Springer, reprint (1975) |
[a2] | N. Jacobson, "Basic algebra" , 1 , Freeman (1985) |
[a3] | S. Lang, "Algebra" , Addison-Wesley (1965) |
How to Cite This Entry:
Trace. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Trace&oldid=16517
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article