Namespaces
Variants
Actions

Difference between revisions of "Value-distribution theory"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
v0960201.png
 +
$#A+1 = 222 n = 0
 +
$#C+1 = 222 : ~/encyclopedia/old_files/data/V096/V.0906020 Value\AAhdistribution theory,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 +
{{MSC|30D35}}
 +
 
''Nevanlinna theory''
 
''Nevanlinna theory''
  
The theory of the distribution of values of meromorphic functions developed in the 1920's by R. Nevanlinna (see [[#References|[1]]]). The basic problem is the study of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960201.png" /> of points in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960202.png" /> at which a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960203.png" /> takes a prescribed value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960204.png" /> (so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960206.png" />-points), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960207.png" />.
+
The theory of the distribution of values of meromorphic functions developed in the 1920's by R. Nevanlinna (see [[#References|[1]]]). The basic problem is the study of the set $  \{ z _ {n} \} $
 +
of points in a domain $  G $
 +
at which a function $  w ( z) $
 +
takes a prescribed value $  w = a $(
 +
so-called $  a $-
 +
points), where $  a \in \mathbf C \cup \{ \infty \} $.
  
 
==Basic concepts.==
 
==Basic concepts.==
The fundamental aspects of Nevanlinna theory can be illustrated by taking the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960208.png" /> is a transcendental [[Meromorphic function|meromorphic function]] on the open complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v0960209.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602010.png" /> denote the number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602011.png" />-points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602012.png" /> (counted with multiplicities) lying in the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602013.png" />. Further, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602014.png" />, define
+
The fundamental aspects of Nevanlinna theory can be illustrated by taking the case where $  w = f ( z) $
 +
is a transcendental [[Meromorphic function|meromorphic function]] on the open complex plane $  \mathbf C $.  
 +
Let $  n ( t, a, f  ) $
 +
denote the number of $  a $-
 +
points of $  f ( z) $(
 +
counted with multiplicities) lying in the disc $  \{ | z | \leq  t \} $.  
 +
Further, for any $  a \in \mathbf C $,
 +
define
 +
 
 +
$$
 +
N ( r, a, f  )  = \
 +
\int\limits _ { 0 } ^ { r }
 +
[ n ( t, a, f  ) - n ( 0, a, f  )] d  \mathop{\rm ln}  t +
 +
n ( 0, a, f  )  \mathop{\rm ln}  r,
 +
$$
 +
 
 +
$$
 +
m ( r, a, f  )  = m \left ( r, \infty , {
 +
\frac{1}{f - a }
 +
} \right ) ,\  a \neq \infty ,
 +
$$
 +
 
 +
$$
 +
m ( r, \infty , f  )  =  {
 +
\frac{1}{2 \pi }
 +
} \int\limits _ { 0 } ^ { {2 }
 +
\pi }  \mathop{\rm ln}  ^ {+} | f ( re ^ {i \theta } ) |  d \theta ,
 +
$$
 +
 
 +
$$
 +
T ( r, f  )  = m ( r, \infty , f  ) + N ( r, \infty , f  ).
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602015.png" /></td> </tr></table>
+
$  T ( r, f  ) $
 +
is called the Nevanlinna characteristic (or characteristic function) of  $  f ( z) $.
 +
The function  $  m ( r, a, f  ) $
 +
describes the average rate of convergence of  $  f ( z) $
 +
to  $  a $
 +
as  $  | z | \rightarrow \infty $,
 +
and the function  $  N ( r, a, f  ) $
 +
describes the average density of the distribution of the  $  a $-
 +
points of  $  f ( z) $.  
 +
The following theorem yields a geometric interpretation of the Nevanlinna characteristic  $  T ( r, f  ) $.  
 +
Let  $  F _ {r} $
 +
denote the part of the [[Riemann surface|Riemann surface]] of  $  f ( z) $
 +
corresponding to the disc  $  \{ | z | \leq  r \} $,
 +
and let  $  \pi A ( r, f  ) $
 +
be the spherical area of the surface  $  F _ {r} $.  
 +
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602016.png" /></td> </tr></table>
+
$$
 +
T ( r, f  )  = \
 +
\int\limits _ { 0 } ^ { r }  A ( s, f  ) d  \mathop{\rm ln}  s + O ( 1) \ \
 +
( r \rightarrow \infty ).
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602017.png" /></td> </tr></table>
+
$  T ( r, f  ) $
 +
can be used to determine the order of growth  $  \rho $
 +
of  $  f ( z) $
 +
and its lower order of growth  $  \lambda $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602018.png" /></td> </tr></table>
+
$$
 +
\rho  = \
 +
\overline{\lim\limits}\; _ {r \rightarrow \infty } \
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602019.png" /> is called the Nevanlinna characteristic (or characteristic function) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602020.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602021.png" /> describes the average rate of convergence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602023.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602024.png" />, and the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602025.png" /> describes the average density of the distribution of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602026.png" />-points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602027.png" />. The following theorem yields a geometric interpretation of the Nevanlinna characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602028.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602029.png" /> denote the part of the [[Riemann surface|Riemann surface]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602030.png" /> corresponding to the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602031.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602032.png" /> be the spherical area of the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602033.png" />. Then
+
\frac{ \mathop{\rm ln}  T ( r, f  ) }{ \mathop{\rm ln}  r }
 +
,\ \
 +
\lambda  = \
 +
\lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602034.png" /></td> </tr></table>
+
\frac{ \mathop{\rm ln}  T ( r, f  ) }{ \mathop{\rm ln}  r }
 +
.
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602035.png" /> can be used to determine the order of growth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602036.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602037.png" /> and its lower order of growth <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602038.png" />:
+
Nevanlinna's first main theorem. As  $  r \rightarrow \infty $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602039.png" /></td> </tr></table>
+
$$
 +
m ( r, a, f  ) + N ( r, a, f  )  = T ( r, f  ) + O ( 1),
 +
$$
  
Nevanlinna's first main theorem. As <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602040.png" />,
+
that is, up to a term that is bounded as  $  r \rightarrow \infty $,
 +
the left-hand side takes the constant value  $  T ( r, f  ) $(
 +
whatever the value of  $  a $).  
 +
In this sense, all values  $  w $
 +
of the meromorphic function  $  f ( z) $
 +
are equivalent. Of special interest is the behaviour of the function  $  N ( r, a, f  ) $
 +
as  $  r \rightarrow \infty $.  
 +
In value-distribution theory, use is made of the following quantitative measures of growth of the functions  $  N ( r, a, f  ) $
 +
and  $  m ( r, a, f  ) $
 +
relative to the growth of the characteristic  $  T ( r, f  ) $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602041.png" /></td> </tr></table>
+
$$
 +
\delta ( a, f  )  = 1 -
 +
\overline{\lim\limits}\; _ {r \rightarrow \infty } \
  
that is, up to a term that is bounded as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602042.png" />, the left-hand side takes the constant value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602043.png" /> (whatever the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602044.png" />). In this sense, all values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602045.png" /> of the meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602046.png" /> are equivalent. Of special interest is the behaviour of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602047.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602048.png" />. In value-distribution theory, use is made of the following quantitative measures of growth of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602050.png" /> relative to the growth of the characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602051.png" />:
+
\frac{N ( r, a, f  ) }{T ( r, f  ) }
 +
  = \
 +
\lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602052.png" /></td> </tr></table>
+
\frac{m ( r, a, f  ) }{T ( r, f  ) }
 +
  \leq  1,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602053.png" /></td> </tr></table>
+
$$
 +
\Delta ( a, f  )  = 1 - \lim\limits _ {\overline{ {r \rightarrow \infty }}\;
 +
 +
\frac{N ( r, a, f  ) }{T ( r, f  ) }
 +
  = \
 +
\overline{\lim\limits}\; _ {r \rightarrow \infty } 
 +
\frac{m ( r, a, f  ) }{T ( r, f  ) }
 +
  \leq  1.
 +
$$
  
The quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602054.png" /> is called the Nevanlinna defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602055.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602057.png" /> is called the Valiron defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602058.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602059.png" />. Let
+
The quantity $  \delta ( a, f  ) $
 +
is called the Nevanlinna defect of $  f ( z) $
 +
at $  a $
 +
and $  \Delta ( a, f  ) $
 +
is called the Valiron defect of $  f ( z) $
 +
at $  a $.  
 +
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602060.png" /></td> </tr></table>
+
$$
 +
D ( f  )  = \{ {a } : {\delta ( a, f  ) > 0 } \}
 +
,\ \
 +
V ( f  )  = \{ {a } : {\Delta ( a, f  ) > 0 } \}
 +
.
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602061.png" /> is called the set of deficient values (cf. [[Defective value|Defective value]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602062.png" /> in the sense of Nevanlinna, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602063.png" /> is called the set of deficient values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602064.png" /> in the sense of Valiron. Nevanlinna's theorem on the magnitudes of the defects and on the set of deficient values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602065.png" /> is as follows. For an arbitrary meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602066.png" />: a) the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602067.png" /> is at most countable; and b) the defects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602068.png" /> satisfy the relation
+
$  D ( f  ) $
 +
is called the set of deficient values (cf. [[Defective value|Defective value]]) of $  f ( z) $
 +
in the sense of Nevanlinna, and $  V ( f  ) $
 +
is called the set of deficient values of $  f ( z) $
 +
in the sense of Valiron. Nevanlinna's theorem on the magnitudes of the defects and on the set of deficient values of $  f ( z) $
 +
is as follows. For an arbitrary meromorphic function $  f ( z) $:  
 +
a) the set $  D ( f  ) $
 +
is at most countable; and b) the defects of $  f ( z) $
 +
satisfy the relation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602069.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\sum _ { ( } a) \delta ( a, f  ) \leq  2
 +
$$
  
(the defect relation). The constant 2 figuring in (1) is the Euler characteristic of the extended complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602070.png" />, which is covered by the Riemann surface of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602071.png" />.
+
(the defect relation). The constant 2 figuring in (1) is the Euler characteristic of the extended complex plane $  \mathbf C \cup \{ \infty \} $,  
 +
which is covered by the Riemann surface of $  f ( z) $.
  
==The structure of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602072.png" />.==
+
==The structure of the set $  D ( f  ) $.==
Nevanlinna's assertion that the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602073.png" /> is at most countable cannot be strengthened. In fact, given any finite or countable set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602074.png" /> in the extended complex plane and any value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602076.png" />, there is a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602077.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602078.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602079.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602080.png" />. For meromorphic functions whose lower order is zero, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602081.png" /> can contain at most one point. Thus, the question on the structure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602082.png" /> is completely solved.
+
Nevanlinna's assertion that the set $  D ( f  ) $
 +
is at most countable cannot be strengthened. In fact, given any finite or countable set of points $  E $
 +
in the extended complex plane and any value of $  \rho $,
 +
0 < \rho \leq  \infty $,  
 +
there is a meromorphic function $  f _  \rho  ( z) $
 +
of order $  \rho $
 +
for which $  E $
 +
coincides with $  D ( f _  \rho  ) $.  
 +
For meromorphic functions whose lower order is zero, $  D ( f  ) $
 +
can contain at most one point. Thus, the question on the structure of $  D ( f  ) $
 +
is completely solved.
  
Moreover, it can be shown that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602083.png" /> there is an entire function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602084.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602085.png" /> for which the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602086.png" /> is countable. Entire functions of lower order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602087.png" /> cannot have finite deficient values.
+
Moreover, it can be shown that for any $  \rho > 0.5 $
 +
there is an entire function $  g _  \rho  ( z) $
 +
of order $  \rho $
 +
for which the set $  D ( g _  \rho  ) $
 +
is countable. Entire functions of lower order $  \lambda \leq  0.5 $
 +
cannot have finite deficient values.
  
==The structure of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602088.png" />.==
+
==The structure of the set $  V ( f  ) $.==
study of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602089.png" /> of Valiron deficient values is as yet (1992) incomplete. G. Valiron showed that there is an entire function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602090.png" /> of order one for which the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602091.png" /> has the cardinality of the continuum. On the other hand, it can be shown that, for an arbitrary meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602092.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602093.png" /> always has zero [[Logarithmic capacity|logarithmic capacity]].
+
study of the set $  V ( f  ) $
 +
of Valiron deficient values is as yet (1992) incomplete. G. Valiron showed that there is an entire function $  g ( z) $
 +
of order one for which the set $  V ( g) $
 +
has the cardinality of the continuum. On the other hand, it can be shown that, for an arbitrary meromorphic function $  f ( z) $,  
 +
the set $  V ( f  ) $
 +
always has zero [[Logarithmic capacity|logarithmic capacity]].
  
For every set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602094.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602095.png" /> of zero logarithmic capacity there is an entire function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602096.png" /> of infinite order for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602097.png" />.
+
For every set $  E $
 +
of class $  F _  \sigma  $
 +
of zero logarithmic capacity there is an entire function $  g ( z) $
 +
of infinite order for which $  E \subset  V ( g) $.
  
 
==Properties of defects of meromorphic functions of finite lower order.==
 
==Properties of defects of meromorphic functions of finite lower order.==
For meromorphic functions of infinite lower order, the defects do not, in general, satisfy any relations other than the defect relation (1). However, if one restricts to meromorphic functions of finite lower order, then the picture changes considerably. In fact, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602098.png" /> has finite lower order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v09602099.png" />, then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020100.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020101.png" />,
+
For meromorphic functions of infinite lower order, the defects do not, in general, satisfy any relations other than the defect relation (1). However, if one restricts to meromorphic functions of finite lower order, then the picture changes considerably. In fact, if $  f ( z) $
 +
has finite lower order $  \lambda $,  
 +
then for any $  \alpha $,  
 +
$  1/3 \leq  \alpha \leq  1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020102.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\sum _ { ( } a) \delta  ^  \alpha  ( a, f  )  \leq  K ( \lambda , \alpha ),
 +
$$
  
where the constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020103.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020105.png" />. On the other hand, there are meromorphic functions of finite lower order such that the series on the left-hand side of (2) diverges when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020106.png" />. For a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020107.png" /> of lower order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020108.png" />, the existence of a deficient value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020109.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020110.png" /> influences its asymptotic properties: such a function cannot have other deficient values.
+
where the constant $  K ( \lambda , \alpha ) $
 +
depends only on $  \lambda $
 +
and $  \alpha $.  
 +
On the other hand, there are meromorphic functions of finite lower order such that the series on the left-hand side of (2) diverges when $  \alpha < 1/3 $.  
 +
For a meromorphic function $  f ( z) $
 +
of lower order $  \lambda \leq  0.5 $,  
 +
the existence of a deficient value $  a $
 +
such that $  \delta ( a, f  ) \geq  1 - \cos  \pi \lambda $
 +
influences its asymptotic properties: such a function cannot have other deficient values.
  
 
==The inverse problem of value-distribution theory.==
 
==The inverse problem of value-distribution theory.==
In a somewhat simplified form it is possible to formulate the inverse problem of value-distribution theory in any class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020111.png" /> of meromorphic functions in the following way. Every point of a certain sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020112.png" /> in the extended complex plane is assigned a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020114.png" />, in such a way that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020115.png" />. It is required to find a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020116.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020117.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020118.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020119.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020120.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020121.png" /> or to prove that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020122.png" /> contains no such function. The inverse problem has been completely solved in the affirmative in the class of entire functions of infinite lower order and in the class of meromorphic functions of infinite lower order. In the solution of the inverse problem in the class of meromorphic functions of finite lower order there arise specific difficulties, due to the fact that in this case the defects satisfy further relations (like (2)) in addition to (1).
+
In a somewhat simplified form it is possible to formulate the inverse problem of value-distribution theory in any class $  {\mathcal K} $
 +
of meromorphic functions in the following way. Every point of a certain sequence $  \{ a _ {k} \} $
 +
in the extended complex plane is assigned a number $  \delta ( a _ {k} ) $,
 +
$  0 < \delta ( a _ {k} ) < 1 $,  
 +
in such a way that $  \sum _ {k} \delta ( a _ {k} ) \leq  2 $.  
 +
It is required to find a meromorphic function $  f ( z) \in {\mathcal K} $
 +
such that $  \delta ( a _ {k} , f  ) = \delta ( a _ {k} ) $,
 +
$  k = 1, 2 \dots $
 +
and $  \delta ( a, f  ) = 0 $
 +
for each $  a \neq a _ {k} $,
 +
$  k = 1, 2 \dots $
 +
or to prove that $  {\mathcal K} $
 +
contains no such function. The inverse problem has been completely solved in the affirmative in the class of entire functions of infinite lower order and in the class of meromorphic functions of infinite lower order. In the solution of the inverse problem in the class of meromorphic functions of finite lower order there arise specific difficulties, due to the fact that in this case the defects satisfy further relations (like (2)) in addition to (1).
  
 
==The growth of meromorphic functions.==
 
==The growth of meromorphic functions.==
Given a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020123.png" />, let
+
Given a meromorphic function $  f ( z) $,  
 +
let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020124.png" /></td> </tr></table>
+
$$
 +
L ( r, \infty , f  )  = \max _ {| z | = r }  \mathop{\rm ln}  ^ {+} | f ( z) |,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020125.png" /></td> </tr></table>
+
$$
 +
L ( r, a, f  )  = L \left ( r, \infty , {
 +
\frac{1}{f - a }
 +
} \right ) ,\  a \neq \infty ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020126.png" /></td> </tr></table>
+
$$
 +
\beta ( a, f  )  = \lim\limits _ {\overline{ {r \rightarrow \infty }}\;
 +
\frac{L ( r, a, f  ) }{T ( r, f  ) }
 +
.
 +
$$
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020127.png" /> is called the deviation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020128.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020129.png" />, and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020130.png" /> is called the set of positive deviations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020131.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020132.png" />. It is known that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020133.png" /> is an entire function of finite order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020134.png" />, then
+
$  \beta ( a, f  ) $
 +
is called the deviation of $  f ( z) $
 +
from $  a $,  
 +
and the set $  \Omega ( f  ) = \{ {a } : {\beta ( a, f  ) > 0 } \} $
 +
is called the set of positive deviations of $  f ( z) $;  
 +
$  D ( f  ) \subseteq \Omega ( f  ) $.  
 +
It is known that if $  g ( z) $
 +
is an entire function of finite order $  \rho $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020135.png" /></td> </tr></table>
+
$$
 +
\beta ( \infty , g)  \leq  \
 +
\left \{
  
Thus, there is the following result: If a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020136.png" /> has finite lower order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020137.png" />, then a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020138.png" /> is at most countable; b) for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020139.png" />,
+
Thus, there is the following result: If a meromorphic function $  f ( z) $
 +
has finite lower order $  \lambda $,  
 +
then a) $  \Omega $
 +
is at most countable; b) for each $  a $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020140.png" /></td> </tr></table>
+
$$
 +
\beta ( a, f  )  \leq  \
 +
\left \{
  
c) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020141.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020142.png" />,
+
c) for any $  \alpha $,
 +
0.5 < \alpha \leq  1 $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020143.png" /></td> </tr></table>
+
$$
 +
\sum _ { ( } a) \beta  ^  \alpha  ( a, f  )  \leq  K ( \lambda , \alpha ),
 +
$$
  
where the constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020144.png" /> depends only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020145.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020146.png" />; and d) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020147.png" />.
+
where the constant $  K ( \lambda , \alpha ) $
 +
depends only on $  \lambda $
 +
and $  \alpha $;  
 +
and d) $  \Omega ( f  ) \subseteq V ( f  ) $.
  
Moreover, there exist meromorphic functions of infinite lower order for which the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020148.png" /> has the cardinality of the continuum. For any meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020149.png" />, the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020150.png" /> (like <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020151.png" />) has zero logarithmic capacity. The following theorem characterizes the differences between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020152.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020153.png" />: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020154.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020155.png" />, there is a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020156.png" /> of lower order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020157.png" /> such that for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020158.png" />,
+
Moreover, there exist meromorphic functions of infinite lower order for which the set $  \Omega ( f  ) $
 +
has the cardinality of the continuum. For any meromorphic function $  f ( z) $,  
 +
the set $  \Omega ( f  ) $(
 +
like $  V ( f  ) $)  
 +
has zero logarithmic capacity. The following theorem characterizes the differences between $  \delta ( a, f  ) $
 +
and $  \beta ( a, f  ) $:  
 +
For any $  \lambda $,
 +
0 \leq  \lambda < \infty $,  
 +
there is a meromorphic function $  f _  \lambda  ( z) $
 +
of lower order $  \lambda $
 +
such that for some $  a $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020159.png" /></td> </tr></table>
+
$$
 +
\delta ( a, f  )  = 0 \ \
 +
\textrm{ and } \ \
 +
\beta ( a, f  )  \geq  1.
 +
$$
  
 
==Exceptional values of meromorphic functions in the sense of Picard and Borel.==
 
==Exceptional values of meromorphic functions in the sense of Picard and Borel.==
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020160.png" /> is called an [[Exceptional value|exceptional value]] of a meromorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020161.png" /> in the sense of Picard if the number of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020162.png" />-points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020163.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020164.png" /> is finite. The value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020165.png" /> is called an exceptional value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020166.png" /> in the sense of Borel if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020167.png" /> increases more slowly (in a certain sense) than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020168.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020169.png" />. A non-constant meromorphic function cannot have more than two Borel (and hence Picard) exceptional values.
+
$  a $
 +
is called an [[Exceptional value|exceptional value]] of a meromorphic function $  f( z) $
 +
in the sense of Picard if the number of $  a $-
 +
points of $  f ( z) $
 +
in $  \{ | z | < \infty \} $
 +
is finite. The value $  a $
 +
is called an exceptional value of $  f ( z) $
 +
in the sense of Borel if $  n ( r, a, f  ) $
 +
increases more slowly (in a certain sense) than $  T ( r, f  ) $
 +
as $  r \rightarrow \infty $.  
 +
A non-constant meromorphic function cannot have more than two Borel (and hence Picard) exceptional values.
  
 
The value-distribution theory of holomorphic mappings of complex manifolds is being successfully developed as a higher-dimensional analogue of Nevanlinna theory (see [[#References|[6]]], [[#References|[7]]]), as is the value-distribution theory of minimal surfaces (see [[#References|[9]]], [[#References|[10]]]).
 
The value-distribution theory of holomorphic mappings of complex manifolds is being successfully developed as a higher-dimensional analogue of Nevanlinna theory (see [[#References|[6]]], [[#References|[7]]]), as is the value-distribution theory of minimal surfaces (see [[#References|[9]]], [[#References|[10]]]).
  
 
==The distribution of values of functions meromorphic in a disc.==
 
==The distribution of values of functions meromorphic in a disc.==
The value-distribution theory of meromorphic functions in the open complex plane has been described above; this is the parabolic case. A theory of growth and value distribution can also be set up in the hyperbolic case, that is, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020170.png" /> is a function meromorphic in the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020171.png" /> (see [[#References|[1]]], [[#References|[8]]]). In this case, the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020172.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020173.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020174.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020175.png" /> are defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020176.png" />, just as in the parabolic case. The Nevanlinna and Valiron defects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020177.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020178.png" /> are thus defined as follows:
+
The value-distribution theory of meromorphic functions in the open complex plane has been described above; this is the parabolic case. A theory of growth and value distribution can also be set up in the hyperbolic case, that is, when $  f ( z) $
 +
is a function meromorphic in the unit disc $  \{ | z | < 1 \} $(
 +
see [[#References|[1]]], [[#References|[8]]]). In this case, the functions $  N( r, a, f  ) $,
 +
$  m ( r, a, f  ) $,
 +
$  L ( r, a, f  ) $,  
 +
and $  T ( r, f  ) $
 +
are defined for $  0 \leq  r < 1 $,  
 +
just as in the parabolic case. The Nevanlinna and Valiron defects of $  f ( z) $
 +
at a point $  a $
 +
are thus defined as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020179.png" /></td> </tr></table>
+
$$
 +
\delta ( a, f  )  = \
 +
\lim\limits _ {\overline{ {r \rightarrow 1 }}\; } \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020180.png" /></td> </tr></table>
+
\frac{m ( r, a, f  ) }{T ( r, f  ) }
 +
,
 +
$$
 +
 
 +
$$
 +
\Delta ( a, f  )  = \overline{\lim\limits}\; _ {r \rightarrow 1 } 
 +
\frac{m ( r, a, f  ) }{T ( r, f  ) }
 +
.
 +
$$
  
 
The quantity
 
The quantity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020181.png" /></td> </tr></table>
+
$$
 +
\beta ( a, f  )  = \
 +
\lim\limits _ {\overline{ {r \rightarrow 1 }}\; } \
 +
 
 +
\frac{L ( r, a, f  ) }{T ( r, f  ) }
 +
 
 +
$$
  
is called the deviation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020182.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020183.png" />.
+
is called the deviation of $  f ( z) $
 +
with respect to $  a $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020184.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020185.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020186.png" />.
+
Let $  D ( f  ) = \{ {a } : {\delta ( a, f  ) > 0 } \} $,  
 +
$  V ( f  ) = \{ {a } : {\Delta ( a, f  ) > 0 } \} $
 +
and $  \Omega ( f  ) = \{ {a } : {\beta ( a, f  ) > 0 } \} $.
  
The main properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020187.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020188.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020189.png" /> and of the structure of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020190.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020191.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020192.png" /> in the parabolic case carry over to the hyperbolic case, but only for those functions for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020193.png" /> increases rapidly (in a certain sense) as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020194.png" />.
+
The main properties of $  \delta ( a, f  ) $,  
 +
$  \Delta ( a, f  ) $
 +
and $  \beta ( a, f  ) $
 +
and of the structure of the sets $  D ( f  ) $,  
 +
$  V ( f  ) $
 +
and $  \Omega ( f  ) $
 +
in the parabolic case carry over to the hyperbolic case, but only for those functions for which $  T ( r, f  ) $
 +
increases rapidly (in a certain sense) as $  r \rightarrow 1 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.K. Hayman,  "Meromorphic functions" , Clarendon Press  (1964)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.U. Arakelyan,  "Entire functions of infinite order with an infinite set of deficient values"  ''Soviet Math. Dokl.'' , '''7''' :  5  (1966)  pp. 1303–1306  ''Dokl. Akad. Nauk SSSR'' , '''170''' :  5  (1966)  pp. 999–1002</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Gol'dberg,  I.V. Ostrovskii,  "Value distribution of meromorphic functions" , Moscow  (1970)  (In Russian)</TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top">  V.I. Petrenko,  "The study of the structure of the set of positive deviations of meromorphic functions"  ''Math. USSR Izv.'' , '''3''' :  6  (1969)  pp. 1251–1270  ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''33''' :  6  (1969)  pp. 1330–1348</TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top">  V.I. Petrenko,  "A study of the structure of the set of positive deviations of meromorphic functions"  ''Math. USSR Izv.'' , '''4''' :  1  (1970)  pp. 31–57  ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''34''' :  1  (1970)  pp. 31–56</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  P. Griffiths,  J. King,  "Nevanlinna theory and holomorphic mappings between algebraic varieties"  ''Acta Math.'' , '''130'''  (1975)  pp. 145–220</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.P. Petrenko,  "The growth of meromorphic functions" , Khar'kov  (1978)  (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  V.P. Petrenko,  "On the growth and distribution of values of minimal surfaces"  ''Dokl. Akad. Nauk SSSR'' , '''255''' :  1  (1981)  pp. 40–42  (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  E.F. Beckenbach,  G.A. Hutchison,  "Meromorphic minimal surfaces"  ''Pacific J. Math.'' , '''28''' :  1  (1969)  pp. 17–47</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R. Nevanilinna,  "Analytic functions" , Springer  (1970)  (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W.K. Hayman,  "Meromorphic functions" , Clarendon Press  (1964)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  N.U. Arakelyan,  "Entire functions of infinite order with an infinite set of deficient values"  ''Soviet Math. Dokl.'' , '''7''' :  5  (1966)  pp. 1303–1306  ''Dokl. Akad. Nauk SSSR'' , '''170''' :  5  (1966)  pp. 999–1002</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  A.A. Gol'dberg,  I.V. Ostrovskii,  "Value distribution of meromorphic functions" , Moscow  (1970)  (In Russian)</TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top">  V.I. Petrenko,  "The study of the structure of the set of positive deviations of meromorphic functions"  ''Math. USSR Izv.'' , '''3''' :  6  (1969)  pp. 1251–1270  ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''33''' :  6  (1969)  pp. 1330–1348</TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top">  V.I. Petrenko,  "A study of the structure of the set of positive deviations of meromorphic functions"  ''Math. USSR Izv.'' , '''4''' :  1  (1970)  pp. 31–57  ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''34''' :  1  (1970)  pp. 31–56</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  P. Griffiths,  J. King,  "Nevanlinna theory and holomorphic mappings between algebraic varieties"  ''Acta Math.'' , '''130'''  (1975)  pp. 145–220</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  B.V. Shabat,  "Introduction of complex analysis" , '''2''' , Moscow  (1976)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  V.P. Petrenko,  "The growth of meromorphic functions" , Khar'kov  (1978)  (In Russian)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  V.P. Petrenko,  "On the growth and distribution of values of minimal surfaces"  ''Dokl. Akad. Nauk SSSR'' , '''255''' :  1  (1981)  pp. 40–42  (In Russian)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  E.F. Beckenbach,  G.A. Hutchison,  "Meromorphic minimal surfaces"  ''Pacific J. Math.'' , '''28''' :  1  (1969)  pp. 17–47</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The solution of the inverse problem of value-distribution theory (in a form sharper than that stated above) is due to D. Drasin [[#References|[a1]]]; the inverse problem for entire functions had been solved previously by W.H.J. Fuchs and W.K. Hayman (cf. [[#References|[2]]], Chapt. 4). To Drasin [[#References|[a2]]] is also due the characterization of functions of finite lower order for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020195.png" />. That the sum in (2) is finite for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020196.png" /> was proved by A. Weitsman [[#References|[a3]]]; earlier, Hayman had shown that this was true for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020197.png" />. On the other hand, there are meromorphic functions of finite order for which the sum in (2) diverges for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020198.png" />. For entire functions the situation is different. Recently, J.L. Lewis and J.-M. Wu have shown [[#References|[a4]]] that there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020199.png" /> such that the sum in (2) converges for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020200.png" /> whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020201.png" /> is an entire function of finite lower order. In fact, according to an old conjecture of N.U. Arakelyan, for such functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020202.png" />. This is perhaps the major open question concerning deficiencies.
+
The solution of the inverse problem of value-distribution theory (in a form sharper than that stated above) is due to D. Drasin [[#References|[a1]]]; the inverse problem for entire functions had been solved previously by W.H.J. Fuchs and W.K. Hayman (cf. [[#References|[2]]], Chapt. 4). To Drasin [[#References|[a2]]] is also due the characterization of functions of finite lower order for which $  \sum _ {(} a) \delta ( a, f  ) = 2 $.  
 +
That the sum in (2) is finite for $  \alpha = 1/3 $
 +
was proved by A. Weitsman [[#References|[a3]]]; earlier, Hayman had shown that this was true for $  \alpha > 1/3 $.  
 +
On the other hand, there are meromorphic functions of finite order for which the sum in (2) diverges for every $  \alpha < 1/3 $.  
 +
For entire functions the situation is different. Recently, J.L. Lewis and J.-M. Wu have shown [[#References|[a4]]] that there exists an $  \alpha _ {0} < 1/3 $
 +
such that the sum in (2) converges for all $  \alpha > \alpha _ {0} $
 +
whenever $  f $
 +
is an entire function of finite lower order. In fact, according to an old conjecture of N.U. Arakelyan, for such functions $  \sum _ {(} a) [  \mathop{\rm log}  1/ \delta ( a, f  ) ]  ^ {-} 1 < \infty $.  
 +
This is perhaps the major open question concerning deficiencies.
  
 
For a detailed discussion of value-distribution theory in several variables, see the articles in [[#References|[a5]]] and [[#References|[a7]]].
 
For a detailed discussion of value-distribution theory in several variables, see the articles in [[#References|[a5]]] and [[#References|[a7]]].
  
Around 1986 P. Vojta [[#References|[a6]]] found a remarkable analogy between the main theorems in value-distribution theory and theorems from [[Diophantine approximations|Diophantine approximations]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020203.png" /> be an algebraic number field of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020204.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020205.png" /> an infinite subset. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020206.png" /> be a finite set of (suitably normalized) valuations on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020207.png" /> including the infinite ones. The guiding principle of the analogy is that the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020208.png" /> from Nevanlinna theory is replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020209.png" />, the angles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020210.png" /> become elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020211.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020212.png" /> becomes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020213.png" />. See [[#References|[a6]]] for a more complete dictionary. The analogue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020214.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020215.png" />, the analogue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020216.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020217.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020218.png" /> is translated into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020219.png" />. The first main theorem then changes into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020220.png" /> and this is a well-known property of heights in [[Algebraic number theory|algebraic number theory]]. One can also introduce a defect, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020221.png" />. The statement <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020222.png" /> is precisely Roth's theorem on the approximation of algebraic numbers by elements from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096020/v096020223.png" />.
+
Around 1986 P. Vojta [[#References|[a6]]] found a remarkable analogy between the main theorems in value-distribution theory and theorems from [[Diophantine approximations|Diophantine approximations]]. Let $  k $
 +
be an algebraic number field of degree $  d $
 +
and $  B \subset  k $
 +
an infinite subset. Let $  S $
 +
be a finite set of (suitably normalized) valuations on $  k $
 +
including the infinite ones. The guiding principle of the analogy is that the set of $  r $
 +
from Nevanlinna theory is replaced by $  B $,  
 +
the angles $  \theta $
 +
become elements of $  S $
 +
and $  | f( r e ^ {i \theta } ) | $
 +
becomes $  \| b \| _ {v} $.  
 +
See [[#References|[a6]]] for a more complete dictionary. The analogue of $  T( r, f  ) $
 +
is  $  h( b) = ( 1 / d) \sum _ {v}  \mathop{\rm log}  ^ {+} \| b \| _ {v} $,  
 +
the analogue of $  m( r, a, f  ) $
 +
is  $  m( a, b) = ( 1 / d) \sum _ {v \in S }  \mathop{\rm log}  ^ {+} \| 1 /( b- a) \| _ {v} $
 +
and $  N( r , a , f  ) $
 +
is translated into $  N( a, b) = ( 1 / d) \sum _ {v \notin S }  \mathop{\rm log}  ^ {+} \| 1 /( b- a ) \| _ {v} $.  
 +
The first main theorem then changes into $  N( a, b) + m ( a, b) = h( b) + O( 1) $
 +
and this is a well-known property of heights in [[Algebraic number theory|algebraic number theory]]. One can also introduce a defect, $  \delta ( a) = {\lim\limits  \inf } _ {b \in B }  {m( a, b) } / h( b) $.  
 +
The statement $  \sum _ {a \in \overline{k}\; }  \delta ( a) \leq  2 $
 +
is precisely Roth's theorem on the approximation of algebraic numbers by elements from $  k $.
  
 
A similar translation of value distribution of meromorphic functions in several variables leads to a number of fascinating conjectures in the area of Diophantine approximations and Diophantine equations.
 
A similar translation of value distribution of meromorphic functions in several variables leads to a number of fascinating conjectures in the area of Diophantine approximations and Diophantine equations.

Latest revision as of 08:27, 6 June 2020


2020 Mathematics Subject Classification: Primary: 30D35 [MSN][ZBL]

Nevanlinna theory

The theory of the distribution of values of meromorphic functions developed in the 1920's by R. Nevanlinna (see [1]). The basic problem is the study of the set $ \{ z _ {n} \} $ of points in a domain $ G $ at which a function $ w ( z) $ takes a prescribed value $ w = a $( so-called $ a $- points), where $ a \in \mathbf C \cup \{ \infty \} $.

Basic concepts.

The fundamental aspects of Nevanlinna theory can be illustrated by taking the case where $ w = f ( z) $ is a transcendental meromorphic function on the open complex plane $ \mathbf C $. Let $ n ( t, a, f ) $ denote the number of $ a $- points of $ f ( z) $( counted with multiplicities) lying in the disc $ \{ | z | \leq t \} $. Further, for any $ a \in \mathbf C $, define

$$ N ( r, a, f ) = \ \int\limits _ { 0 } ^ { r } [ n ( t, a, f ) - n ( 0, a, f )] d \mathop{\rm ln} t + n ( 0, a, f ) \mathop{\rm ln} r, $$

$$ m ( r, a, f ) = m \left ( r, \infty , { \frac{1}{f - a } } \right ) ,\ a \neq \infty , $$

$$ m ( r, \infty , f ) = { \frac{1}{2 \pi } } \int\limits _ { 0 } ^ { {2 } \pi } \mathop{\rm ln} ^ {+} | f ( re ^ {i \theta } ) | d \theta , $$

$$ T ( r, f ) = m ( r, \infty , f ) + N ( r, \infty , f ). $$

$ T ( r, f ) $ is called the Nevanlinna characteristic (or characteristic function) of $ f ( z) $. The function $ m ( r, a, f ) $ describes the average rate of convergence of $ f ( z) $ to $ a $ as $ | z | \rightarrow \infty $, and the function $ N ( r, a, f ) $ describes the average density of the distribution of the $ a $- points of $ f ( z) $. The following theorem yields a geometric interpretation of the Nevanlinna characteristic $ T ( r, f ) $. Let $ F _ {r} $ denote the part of the Riemann surface of $ f ( z) $ corresponding to the disc $ \{ | z | \leq r \} $, and let $ \pi A ( r, f ) $ be the spherical area of the surface $ F _ {r} $. Then

$$ T ( r, f ) = \ \int\limits _ { 0 } ^ { r } A ( s, f ) d \mathop{\rm ln} s + O ( 1) \ \ ( r \rightarrow \infty ). $$

$ T ( r, f ) $ can be used to determine the order of growth $ \rho $ of $ f ( z) $ and its lower order of growth $ \lambda $:

$$ \rho = \ \overline{\lim\limits}\; _ {r \rightarrow \infty } \ \frac{ \mathop{\rm ln} T ( r, f ) }{ \mathop{\rm ln} r } ,\ \ \lambda = \ \lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \ \frac{ \mathop{\rm ln} T ( r, f ) }{ \mathop{\rm ln} r } . $$

Nevanlinna's first main theorem. As $ r \rightarrow \infty $,

$$ m ( r, a, f ) + N ( r, a, f ) = T ( r, f ) + O ( 1), $$

that is, up to a term that is bounded as $ r \rightarrow \infty $, the left-hand side takes the constant value $ T ( r, f ) $( whatever the value of $ a $). In this sense, all values $ w $ of the meromorphic function $ f ( z) $ are equivalent. Of special interest is the behaviour of the function $ N ( r, a, f ) $ as $ r \rightarrow \infty $. In value-distribution theory, use is made of the following quantitative measures of growth of the functions $ N ( r, a, f ) $ and $ m ( r, a, f ) $ relative to the growth of the characteristic $ T ( r, f ) $:

$$ \delta ( a, f ) = 1 - \overline{\lim\limits}\; _ {r \rightarrow \infty } \ \frac{N ( r, a, f ) }{T ( r, f ) } = \ \lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \ \frac{m ( r, a, f ) }{T ( r, f ) } \leq 1, $$

$$ \Delta ( a, f ) = 1 - \lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \frac{N ( r, a, f ) }{T ( r, f ) } = \ \overline{\lim\limits}\; _ {r \rightarrow \infty } \frac{m ( r, a, f ) }{T ( r, f ) } \leq 1. $$

The quantity $ \delta ( a, f ) $ is called the Nevanlinna defect of $ f ( z) $ at $ a $ and $ \Delta ( a, f ) $ is called the Valiron defect of $ f ( z) $ at $ a $. Let

$$ D ( f ) = \{ {a } : {\delta ( a, f ) > 0 } \} ,\ \ V ( f ) = \{ {a } : {\Delta ( a, f ) > 0 } \} . $$

$ D ( f ) $ is called the set of deficient values (cf. Defective value) of $ f ( z) $ in the sense of Nevanlinna, and $ V ( f ) $ is called the set of deficient values of $ f ( z) $ in the sense of Valiron. Nevanlinna's theorem on the magnitudes of the defects and on the set of deficient values of $ f ( z) $ is as follows. For an arbitrary meromorphic function $ f ( z) $: a) the set $ D ( f ) $ is at most countable; and b) the defects of $ f ( z) $ satisfy the relation

$$ \tag{1 } \sum _ { ( } a) \delta ( a, f ) \leq 2 $$

(the defect relation). The constant 2 figuring in (1) is the Euler characteristic of the extended complex plane $ \mathbf C \cup \{ \infty \} $, which is covered by the Riemann surface of $ f ( z) $.

The structure of the set $ D ( f ) $.

Nevanlinna's assertion that the set $ D ( f ) $ is at most countable cannot be strengthened. In fact, given any finite or countable set of points $ E $ in the extended complex plane and any value of $ \rho $, $ 0 < \rho \leq \infty $, there is a meromorphic function $ f _ \rho ( z) $ of order $ \rho $ for which $ E $ coincides with $ D ( f _ \rho ) $. For meromorphic functions whose lower order is zero, $ D ( f ) $ can contain at most one point. Thus, the question on the structure of $ D ( f ) $ is completely solved.

Moreover, it can be shown that for any $ \rho > 0.5 $ there is an entire function $ g _ \rho ( z) $ of order $ \rho $ for which the set $ D ( g _ \rho ) $ is countable. Entire functions of lower order $ \lambda \leq 0.5 $ cannot have finite deficient values.

The structure of the set $ V ( f ) $.

study of the set $ V ( f ) $ of Valiron deficient values is as yet (1992) incomplete. G. Valiron showed that there is an entire function $ g ( z) $ of order one for which the set $ V ( g) $ has the cardinality of the continuum. On the other hand, it can be shown that, for an arbitrary meromorphic function $ f ( z) $, the set $ V ( f ) $ always has zero logarithmic capacity.

For every set $ E $ of class $ F _ \sigma $ of zero logarithmic capacity there is an entire function $ g ( z) $ of infinite order for which $ E \subset V ( g) $.

Properties of defects of meromorphic functions of finite lower order.

For meromorphic functions of infinite lower order, the defects do not, in general, satisfy any relations other than the defect relation (1). However, if one restricts to meromorphic functions of finite lower order, then the picture changes considerably. In fact, if $ f ( z) $ has finite lower order $ \lambda $, then for any $ \alpha $, $ 1/3 \leq \alpha \leq 1 $,

$$ \tag{2 } \sum _ { ( } a) \delta ^ \alpha ( a, f ) \leq K ( \lambda , \alpha ), $$

where the constant $ K ( \lambda , \alpha ) $ depends only on $ \lambda $ and $ \alpha $. On the other hand, there are meromorphic functions of finite lower order such that the series on the left-hand side of (2) diverges when $ \alpha < 1/3 $. For a meromorphic function $ f ( z) $ of lower order $ \lambda \leq 0.5 $, the existence of a deficient value $ a $ such that $ \delta ( a, f ) \geq 1 - \cos \pi \lambda $ influences its asymptotic properties: such a function cannot have other deficient values.

The inverse problem of value-distribution theory.

In a somewhat simplified form it is possible to formulate the inverse problem of value-distribution theory in any class $ {\mathcal K} $ of meromorphic functions in the following way. Every point of a certain sequence $ \{ a _ {k} \} $ in the extended complex plane is assigned a number $ \delta ( a _ {k} ) $, $ 0 < \delta ( a _ {k} ) < 1 $, in such a way that $ \sum _ {k} \delta ( a _ {k} ) \leq 2 $. It is required to find a meromorphic function $ f ( z) \in {\mathcal K} $ such that $ \delta ( a _ {k} , f ) = \delta ( a _ {k} ) $, $ k = 1, 2 \dots $ and $ \delta ( a, f ) = 0 $ for each $ a \neq a _ {k} $, $ k = 1, 2 \dots $ or to prove that $ {\mathcal K} $ contains no such function. The inverse problem has been completely solved in the affirmative in the class of entire functions of infinite lower order and in the class of meromorphic functions of infinite lower order. In the solution of the inverse problem in the class of meromorphic functions of finite lower order there arise specific difficulties, due to the fact that in this case the defects satisfy further relations (like (2)) in addition to (1).

The growth of meromorphic functions.

Given a meromorphic function $ f ( z) $, let

$$ L ( r, \infty , f ) = \max _ {| z | = r } \mathop{\rm ln} ^ {+} | f ( z) |, $$

$$ L ( r, a, f ) = L \left ( r, \infty , { \frac{1}{f - a } } \right ) ,\ a \neq \infty , $$

$$ \beta ( a, f ) = \lim\limits _ {\overline{ {r \rightarrow \infty }}\; } \frac{L ( r, a, f ) }{T ( r, f ) } . $$

$ \beta ( a, f ) $ is called the deviation of $ f ( z) $ from $ a $, and the set $ \Omega ( f ) = \{ {a } : {\beta ( a, f ) > 0 } \} $ is called the set of positive deviations of $ f ( z) $; $ D ( f ) \subseteq \Omega ( f ) $. It is known that if $ g ( z) $ is an entire function of finite order $ \rho $, then

$$ \beta ( \infty , g) \leq \ \left \{ Thus, there is the following result: If a meromorphic function $ f ( z) $ has finite lower order $ \lambda $, then a) $ \Omega $ is at most countable; b) for each $ a $, $$ \beta ( a, f ) \leq \ \left \{

c) for any $ \alpha $, $ 0.5 < \alpha \leq 1 $,

$$ \sum _ { ( } a) \beta ^ \alpha ( a, f ) \leq K ( \lambda , \alpha ), $$

where the constant $ K ( \lambda , \alpha ) $ depends only on $ \lambda $ and $ \alpha $; and d) $ \Omega ( f ) \subseteq V ( f ) $.

Moreover, there exist meromorphic functions of infinite lower order for which the set $ \Omega ( f ) $ has the cardinality of the continuum. For any meromorphic function $ f ( z) $, the set $ \Omega ( f ) $( like $ V ( f ) $) has zero logarithmic capacity. The following theorem characterizes the differences between $ \delta ( a, f ) $ and $ \beta ( a, f ) $: For any $ \lambda $, $ 0 \leq \lambda < \infty $, there is a meromorphic function $ f _ \lambda ( z) $ of lower order $ \lambda $ such that for some $ a $,

$$ \delta ( a, f ) = 0 \ \ \textrm{ and } \ \ \beta ( a, f ) \geq 1. $$

Exceptional values of meromorphic functions in the sense of Picard and Borel.

$ a $ is called an exceptional value of a meromorphic function $ f( z) $ in the sense of Picard if the number of $ a $- points of $ f ( z) $ in $ \{ | z | < \infty \} $ is finite. The value $ a $ is called an exceptional value of $ f ( z) $ in the sense of Borel if $ n ( r, a, f ) $ increases more slowly (in a certain sense) than $ T ( r, f ) $ as $ r \rightarrow \infty $. A non-constant meromorphic function cannot have more than two Borel (and hence Picard) exceptional values.

The value-distribution theory of holomorphic mappings of complex manifolds is being successfully developed as a higher-dimensional analogue of Nevanlinna theory (see [6], [7]), as is the value-distribution theory of minimal surfaces (see [9], [10]).

The distribution of values of functions meromorphic in a disc.

The value-distribution theory of meromorphic functions in the open complex plane has been described above; this is the parabolic case. A theory of growth and value distribution can also be set up in the hyperbolic case, that is, when $ f ( z) $ is a function meromorphic in the unit disc $ \{ | z | < 1 \} $( see [1], [8]). In this case, the functions $ N( r, a, f ) $, $ m ( r, a, f ) $, $ L ( r, a, f ) $, and $ T ( r, f ) $ are defined for $ 0 \leq r < 1 $, just as in the parabolic case. The Nevanlinna and Valiron defects of $ f ( z) $ at a point $ a $ are thus defined as follows:

$$ \delta ( a, f ) = \ \lim\limits _ {\overline{ {r \rightarrow 1 }}\; } \ \frac{m ( r, a, f ) }{T ( r, f ) } , $$

$$ \Delta ( a, f ) = \overline{\lim\limits}\; _ {r \rightarrow 1 } \frac{m ( r, a, f ) }{T ( r, f ) } . $$

The quantity

$$ \beta ( a, f ) = \ \lim\limits _ {\overline{ {r \rightarrow 1 }}\; } \ \frac{L ( r, a, f ) }{T ( r, f ) } $$

is called the deviation of $ f ( z) $ with respect to $ a $.

Let $ D ( f ) = \{ {a } : {\delta ( a, f ) > 0 } \} $, $ V ( f ) = \{ {a } : {\Delta ( a, f ) > 0 } \} $ and $ \Omega ( f ) = \{ {a } : {\beta ( a, f ) > 0 } \} $.

The main properties of $ \delta ( a, f ) $, $ \Delta ( a, f ) $ and $ \beta ( a, f ) $ and of the structure of the sets $ D ( f ) $, $ V ( f ) $ and $ \Omega ( f ) $ in the parabolic case carry over to the hyperbolic case, but only for those functions for which $ T ( r, f ) $ increases rapidly (in a certain sense) as $ r \rightarrow 1 $.

References

[1] R. Nevanilinna, "Analytic functions" , Springer (1970) (Translated from German)
[2] W.K. Hayman, "Meromorphic functions" , Clarendon Press (1964)
[3] N.U. Arakelyan, "Entire functions of infinite order with an infinite set of deficient values" Soviet Math. Dokl. , 7 : 5 (1966) pp. 1303–1306 Dokl. Akad. Nauk SSSR , 170 : 5 (1966) pp. 999–1002
[4] A.A. Gol'dberg, I.V. Ostrovskii, "Value distribution of meromorphic functions" , Moscow (1970) (In Russian)
[5a] V.I. Petrenko, "The study of the structure of the set of positive deviations of meromorphic functions" Math. USSR Izv. , 3 : 6 (1969) pp. 1251–1270 Izv. Akad. Nauk SSSR, Ser. Mat. , 33 : 6 (1969) pp. 1330–1348
[5b] V.I. Petrenko, "A study of the structure of the set of positive deviations of meromorphic functions" Math. USSR Izv. , 4 : 1 (1970) pp. 31–57 Izv. Akad. Nauk SSSR, Ser. Mat. , 34 : 1 (1970) pp. 31–56
[6] P. Griffiths, J. King, "Nevanlinna theory and holomorphic mappings between algebraic varieties" Acta Math. , 130 (1975) pp. 145–220
[7] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian)
[8] V.P. Petrenko, "The growth of meromorphic functions" , Khar'kov (1978) (In Russian)
[9] V.P. Petrenko, "On the growth and distribution of values of minimal surfaces" Dokl. Akad. Nauk SSSR , 255 : 1 (1981) pp. 40–42 (In Russian)
[10] E.F. Beckenbach, G.A. Hutchison, "Meromorphic minimal surfaces" Pacific J. Math. , 28 : 1 (1969) pp. 17–47

Comments

The solution of the inverse problem of value-distribution theory (in a form sharper than that stated above) is due to D. Drasin [a1]; the inverse problem for entire functions had been solved previously by W.H.J. Fuchs and W.K. Hayman (cf. [2], Chapt. 4). To Drasin [a2] is also due the characterization of functions of finite lower order for which $ \sum _ {(} a) \delta ( a, f ) = 2 $. That the sum in (2) is finite for $ \alpha = 1/3 $ was proved by A. Weitsman [a3]; earlier, Hayman had shown that this was true for $ \alpha > 1/3 $. On the other hand, there are meromorphic functions of finite order for which the sum in (2) diverges for every $ \alpha < 1/3 $. For entire functions the situation is different. Recently, J.L. Lewis and J.-M. Wu have shown [a4] that there exists an $ \alpha _ {0} < 1/3 $ such that the sum in (2) converges for all $ \alpha > \alpha _ {0} $ whenever $ f $ is an entire function of finite lower order. In fact, according to an old conjecture of N.U. Arakelyan, for such functions $ \sum _ {(} a) [ \mathop{\rm log} 1/ \delta ( a, f ) ] ^ {-} 1 < \infty $. This is perhaps the major open question concerning deficiencies.

For a detailed discussion of value-distribution theory in several variables, see the articles in [a5] and [a7].

Around 1986 P. Vojta [a6] found a remarkable analogy between the main theorems in value-distribution theory and theorems from Diophantine approximations. Let $ k $ be an algebraic number field of degree $ d $ and $ B \subset k $ an infinite subset. Let $ S $ be a finite set of (suitably normalized) valuations on $ k $ including the infinite ones. The guiding principle of the analogy is that the set of $ r $ from Nevanlinna theory is replaced by $ B $, the angles $ \theta $ become elements of $ S $ and $ | f( r e ^ {i \theta } ) | $ becomes $ \| b \| _ {v} $. See [a6] for a more complete dictionary. The analogue of $ T( r, f ) $ is $ h( b) = ( 1 / d) \sum _ {v} \mathop{\rm log} ^ {+} \| b \| _ {v} $, the analogue of $ m( r, a, f ) $ is $ m( a, b) = ( 1 / d) \sum _ {v \in S } \mathop{\rm log} ^ {+} \| 1 /( b- a) \| _ {v} $ and $ N( r , a , f ) $ is translated into $ N( a, b) = ( 1 / d) \sum _ {v \notin S } \mathop{\rm log} ^ {+} \| 1 /( b- a ) \| _ {v} $. The first main theorem then changes into $ N( a, b) + m ( a, b) = h( b) + O( 1) $ and this is a well-known property of heights in algebraic number theory. One can also introduce a defect, $ \delta ( a) = {\lim\limits \inf } _ {b \in B } {m( a, b) } / h( b) $. The statement $ \sum _ {a \in \overline{k}\; } \delta ( a) \leq 2 $ is precisely Roth's theorem on the approximation of algebraic numbers by elements from $ k $.

A similar translation of value distribution of meromorphic functions in several variables leads to a number of fascinating conjectures in the area of Diophantine approximations and Diophantine equations.

References

[a1] D. Drasin, "The inverse problem of Nevanlinna theory" Acta. Math. , 138 (1977) pp. 83–151
[a2] D. Drasin, "Proof of a conjecture of F. Nevanlinna concerning functions which have deficiency sum two" Acta Math. , 158 (1987) pp. 1–94
[a3] A. Weitsman, "A theorem on Nevanlinna deficiencies" Acta Math. , 125 (1972) pp. 41–52
[a4] J.L. Lewis, J.-M. Wu, "On conjectures of Arakelyan and Littlewood" J. d'Anal. Math. , 50 (1988) pp. 259–283
[a5] I. Laine (ed.) S. Rickman (ed.) , Value distribution theory , Lect. notes in math. , 981 , Springer (1983)
[a6] P. Vojta, "Diophantine approximation and value distribution theory" , Lect. notes in math. , 1239 , Springer (1987)
[a7] P.A. Griffiths, "Entire holomorphic mappings in one and several variables" , Annals Math. Studies , 85 , Princeton Univ. Press (1976)
How to Cite This Entry:
Value-distribution theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Value-distribution_theory&oldid=16270
This article was adapted from an original article by V.P. Petrenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article