Namespaces
Variants
Actions

Difference between revisions of "Freudenthal-Kantor triple system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A triple system considered for constructing all simple Lie algebras (cf. [[Lie algebra|Lie algebra]]), and introduced as an algebraic system which is a generalization both of the algebraic systems appearing in the metasymplectic geometry developed by H. Freudenthal and of a generalized [[Jordan triple system|Jordan triple system]] of second order developed by I.L. Kantor.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
Recall that a triple system is a [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302401.png" /> over a [[Field|field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302402.png" /> together with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302403.png" />-trilinear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302404.png" />.
+
Out of 57 formulas, 57 were replaced by TEX code.-->
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302405.png" />, a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302406.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302407.png" /> with the trilinear product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302408.png" /> is called a Freudenthal–Kantor triple system if
+
{{TEX|semi-auto}}{{TEX|done}}
 +
A [[triple system]] considered for constructing all simple Lie algebras (cf. [[Lie algebra|Lie algebra]]), and introduced as an algebraic system which is a generalization both of the algebraic systems appearing in the metasymplectic geometry developed by H. Freudenthal and of a generalized [[Jordan triple system|Jordan triple system]] of second order developed by I.L. Kantor.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f1302409.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
Recall that a triple system is a [[Vector space|vector space]] $V$ over a [[Field|field]] $\Phi$ together with a $\Phi$-trilinear mapping $V \times V \times V \rightarrow V$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024010.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
For $ \epsilon = \pm 1$, a vector space $U ( \varepsilon )$ over a field $\Phi$ with the trilinear product $\langle x y z \rangle$ is called a Freudenthal–Kantor triple system if
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024012.png" />.
+
\begin{equation} \tag{a1} \langle a b \langle c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle, \end{equation}
  
In particular, a Freudenthal–Kantor triple system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024013.png" /> is said to be balanced if there exists a bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024014.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024015.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024016.png" />.
+
\begin{equation} \tag{a2} K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0, \end{equation}
 +
 
 +
where $L ( a , b ) c = \langle a b c \rangle$ and $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$.
 +
 
 +
In particular, a Freudenthal–Kantor triple system $U ( \varepsilon )$ is said to be balanced if there exists a bilinear form $\langle \, .\, ,\,  . \, \rangle$ such that $K ( a , b ) = \langle a , b \rangle \operatorname{Id}$, for all $a,b \in U ( \varepsilon )$.
  
 
This balancing property is closely related to metasymplectic geometry.
 
This balancing property is closely related to metasymplectic geometry.
  
Note that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024018.png" /> (identically), then the Freudenthal–Kantor triple system reduces to a Jordan triple system.
+
Note that if $\varepsilon = - 1$ and $K ( a , b ) \equiv 0$ (identically), then the Freudenthal–Kantor triple system reduces to a Jordan triple system.
  
 
As the notion of a Freudenthal–Kantor triple system includes the notions of a generalized Jordan triple system of second order, a structurable algebra, and an [[Allison–Hein triple system|Allison–Hein triple system]], it is useful in obtaining all Lie algebras, without the use of root systems and Cartan matrices.
 
As the notion of a Freudenthal–Kantor triple system includes the notions of a generalized Jordan triple system of second order, a structurable algebra, and an [[Allison–Hein triple system|Allison–Hein triple system]], it is useful in obtaining all Lie algebras, without the use of root systems and Cartan matrices.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024019.png" /> be a vector space with a bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024020.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024021.png" /> is a Freudenthal–Kantor triple system with respect to the triple product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024022.png" />. In particular, it is important that the linear span <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024023.png" /> of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024024.png" /> makes a Jordan triple system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024025.png" /> with respect to the triple product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024026.png" />.
+
Let $V$ be a vector space with a bilinear form $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$. Then $V$ is a Freudenthal–Kantor triple system with respect to the triple product $\langle x y z \rangle : = \langle y , z \rangle x$. In particular, it is important that the [[linear span]] $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ of the set $K ( a , b )$ makes a Jordan triple system of $( \text { End } U ( \varepsilon ) ) ^ { + }$ with respect to the triple product $\{ A B C \} : = 1 / 2 ( A B C + C B A )$.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024027.png" /> be a Freudenthal–Kantor triple system. The vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024028.png" /> becomes a [[Lie triple system|Lie triple system]] with respect to the triple product defined by
+
Let $U ( \varepsilon )$ be a Freudenthal–Kantor triple system. The vector space $U ( \varepsilon ) \oplus U ( \varepsilon )$ becomes a [[Lie triple system|Lie triple system]] with respect to the triple product defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024029.png" /></td> </tr></table>
+
\begin{equation*} \left[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) \right] : = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024030.png" /></td> </tr></table>
+
\begin{equation*} := \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } &amp; { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } &amp; { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right). \end{equation*}
  
Using this, one can obtain the Lie triple system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024031.png" /> associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024032.png" />; it is denoted be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024033.png" />.
+
Using this, one can obtain the Lie triple system $U ( \varepsilon ) \oplus U ( \varepsilon )$ associated with $U ( \varepsilon )$; it is denoted be $T ( \varepsilon )$.
  
Using the concept of the standard embedding Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024034.png" /> associated with a Lie triple system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024035.png" />, one can obtain the construction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024036.png" /> associated with a Freudenthal–Kantor triple system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024037.png" />. In fact, put
+
Using the concept of the standard embedding Lie algebra $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ associated with a Lie triple system $T ( \varepsilon )$, one can obtain the construction of $L ( \varepsilon )$ associated with a Freudenthal–Kantor triple system $U ( \varepsilon )$. In fact, put
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024038.png" /> equal to the linear span of the endomorphisms
+
$L_{2}$ equal to the linear span of the endomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024039.png" /></td> </tr></table>
+
\begin{equation*} \left( \begin{array} { c c } { 0 } &amp; { K ( a , b ) } \\ { 0 } &amp; { 0 } \end{array} \right); \end{equation*}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024040.png" />;
+
$L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024041.png" />;
+
$L_{ - 1} : = ( 0 ) \oplus U ( \varepsilon )$;
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024042.png" /> equal to the linear span of the endomorphisms
+
$L_0$ equal to the linear span of the endomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024043.png" /></td> </tr></table>
+
\begin{equation*} \left( \begin{array} { c c } { L ( a , b ) } &amp; { 0 } \\ { 0 } &amp; { \varepsilon L ( b , a ) } \end{array} \right); \end{equation*}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024044.png" /> equal to the linear span of the endomorphisms
+
$L_{ - 2}$ equal to the linear span of the endomorphisms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024045.png" /></td> </tr></table>
+
\begin{equation*} \left( \begin{array} { r r } { 0 } &amp; { 0 } \\ { - \varepsilon K ( c , d ) } &amp; { 0 } \end{array} \right). \end{equation*}
  
 
Then one obtains the decomposition
 
Then one obtains the decomposition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024046.png" /></td> </tr></table>
+
\begin{equation*} L ( \varepsilon ) = L _ { - 2 } \bigoplus L _ { - 1 } \bigoplus L _ { 0 } \bigoplus L _ { 1 } \bigoplus L _ { 2 }, \end{equation*}
  
 
and, more precisely,
 
and, more precisely,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024047.png" /></td> </tr></table>
+
\begin{equation*} \left[ \left( \begin{array} { c c } { \text{Id} } &amp; { 0 } \\ { 0 } &amp; { -  \text{Id} } \end{array} \right) , L _ { i } \right] = i L _ { i } ( - 2 \leq i \leq 2 ). \end{equation*}
  
 
These results imply the dimensional formula
 
These results imply the dimensional formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024048.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { dim } _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )+ \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024049.png" /></td> </tr></table>
+
\begin{equation*} + \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } = \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024050.png" /></td> </tr></table>
+
\begin{equation*} = \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon ). \end{equation*}
  
This algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024051.png" /> is called the Lie algebra associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024052.png" />.
+
This algebra $L ( \varepsilon )$ is called the Lie algebra associated with $U ( \varepsilon )$.
  
 
The concepts of a triple system and a supertriple system are important in the theory of quarks and Yang–Baxter equations.
 
The concepts of a triple system and a supertriple system are important in the theory of quarks and Yang–Baxter equations.
  
Note that a  "triple system"  in the sense discussed above is totally different from  "triple system"  in combinatorics (see, e.g., [[Steiner system|Steiner system]]).
+
Note that a  "triple system"  in the sense discussed above is totally different from  "triple system"  in combinatorics (see, e.g., [[Steiner triple system]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. Freudenthal,  "Beziehungen der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024053.png" /> und <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024054.png" /> zur Oktavenebene I–II"  ''Indag. Math.'' , '''16'''  (1954)  pp. 218–230; 363–386</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Kamiya,  "The construction of all simple Lie algebras over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024055.png" /> from balanced Freudenthal–Kantor triple systems" , ''Contributions to General Algebra'' , '''7''' , Hölder–Pichler–Tempsky, Wien  (1991)  pp. 205–213</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N. Kamiya,  "On Freudenthal–Kantor triple systems and generalized structurable algebras" , ''Non-Associative Algebra and Its Applications'' , Kluwer Acad. Publ.  (1994)  pp. 198–203</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  N. Kamiya,  S. Okubo,  "On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024056.png" />-Lie supertriple systems associated with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024057.png" />-Freudenthal–Kantor supertriple systems"  ''Proc. Edinburgh Math. Soc.'' , '''43'''  (2000)  pp. 243–260</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  I.L. Kantor,  "Models of exceptional Lie algebras"  ''Soviet Math. Dokl.'' , '''14'''  (1973)  pp. 254–258</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  S. Okubo,  "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press  (1995)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  K. Yamaguti,  "On the metasymplectic geometry and triple systems"  ''Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ.'' , '''306'''  (1977)  pp. 55–92  (In Japanese)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  H. Freudenthal,  "Beziehungen der $E _ { 7 }$ und $E _ { 8 }$ zur Oktavenebene I–II"  ''Indag. Math.'' , '''16'''  (1954)  pp. 218–230; 363–386</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  N. Kamiya,  "The construction of all simple Lie algebras over $C$ from balanced Freudenthal–Kantor triple systems" , ''Contributions to General Algebra'' , '''7''' , Hölder–Pichler–Tempsky, Wien  (1991)  pp. 205–213</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  N. Kamiya,  "On Freudenthal–Kantor triple systems and generalized structurable algebras" , ''Non-Associative Algebra and Its Applications'' , Kluwer Acad. Publ.  (1994)  pp. 198–203</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  N. Kamiya,  S. Okubo,  "On $\delta$-Lie supertriple systems associated with $( \varepsilon , \delta )$-Freudenthal–Kantor supertriple systems"  ''Proc. Edinburgh Math. Soc.'' , '''43'''  (2000)  pp. 243–260</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  I.L. Kantor,  "Models of exceptional Lie algebras"  ''Soviet Math. Dokl.'' , '''14'''  (1973)  pp. 254–258</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  S. Okubo,  "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press  (1995)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  K. Yamaguti,  "On the metasymplectic geometry and triple systems"  ''Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ.'' , '''306'''  (1977)  pp. 55–92  (In Japanese)</td></tr></table>

Latest revision as of 19:44, 27 February 2021

A triple system considered for constructing all simple Lie algebras (cf. Lie algebra), and introduced as an algebraic system which is a generalization both of the algebraic systems appearing in the metasymplectic geometry developed by H. Freudenthal and of a generalized Jordan triple system of second order developed by I.L. Kantor.

Recall that a triple system is a vector space $V$ over a field $\Phi$ together with a $\Phi$-trilinear mapping $V \times V \times V \rightarrow V$.

For $ \epsilon = \pm 1$, a vector space $U ( \varepsilon )$ over a field $\Phi$ with the trilinear product $\langle x y z \rangle$ is called a Freudenthal–Kantor triple system if

\begin{equation} \tag{a1} \langle a b \langle c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle, \end{equation}

\begin{equation} \tag{a2} K ( L ( a , b ) c , d ) + K ( c , L ( a , b ) d ) + K ( a , K ( c , d ) b ) = 0, \end{equation}

where $L ( a , b ) c = \langle a b c \rangle$ and $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$.

In particular, a Freudenthal–Kantor triple system $U ( \varepsilon )$ is said to be balanced if there exists a bilinear form $\langle \, .\, ,\, . \, \rangle$ such that $K ( a , b ) = \langle a , b \rangle \operatorname{Id}$, for all $a,b \in U ( \varepsilon )$.

This balancing property is closely related to metasymplectic geometry.

Note that if $\varepsilon = - 1$ and $K ( a , b ) \equiv 0$ (identically), then the Freudenthal–Kantor triple system reduces to a Jordan triple system.

As the notion of a Freudenthal–Kantor triple system includes the notions of a generalized Jordan triple system of second order, a structurable algebra, and an Allison–Hein triple system, it is useful in obtaining all Lie algebras, without the use of root systems and Cartan matrices.

Let $V$ be a vector space with a bilinear form $\langle x , y \rangle = - \varepsilon \langle y , x \rangle$. Then $V$ is a Freudenthal–Kantor triple system with respect to the triple product $\langle x y z \rangle : = \langle y , z \rangle x$. In particular, it is important that the linear span $\mathbf{k} : = \{ K ( a , b ) \} _ { \text{span} }$ of the set $K ( a , b )$ makes a Jordan triple system of $( \text { End } U ( \varepsilon ) ) ^ { + }$ with respect to the triple product $\{ A B C \} : = 1 / 2 ( A B C + C B A )$.

Let $U ( \varepsilon )$ be a Freudenthal–Kantor triple system. The vector space $U ( \varepsilon ) \oplus U ( \varepsilon )$ becomes a Lie triple system with respect to the triple product defined by

\begin{equation*} \left[ \left( \begin{array} { l } { a } \\ { b } \end{array} \right) \left( \begin{array} { l } { c } \\ { d } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right) \right] : = \end{equation*}

\begin{equation*} := \left( \begin{array} { c c } { L ( a , d ) - L ( c , b ) } & { K ( a , c ) } \\ { - \varepsilon K ( b , d ) } & { \varepsilon ( L ( d , a ) - L ( b , c ) ) } \end{array} \right) \left( \begin{array} { l } { e } \\ { f } \end{array} \right). \end{equation*}

Using this, one can obtain the Lie triple system $U ( \varepsilon ) \oplus U ( \varepsilon )$ associated with $U ( \varepsilon )$; it is denoted be $T ( \varepsilon )$.

Using the concept of the standard embedding Lie algebra $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ associated with a Lie triple system $T ( \varepsilon )$, one can obtain the construction of $L ( \varepsilon )$ associated with a Freudenthal–Kantor triple system $U ( \varepsilon )$. In fact, put

$L_{2}$ equal to the linear span of the endomorphisms

\begin{equation*} \left( \begin{array} { c c } { 0 } & { K ( a , b ) } \\ { 0 } & { 0 } \end{array} \right); \end{equation*}

$L _ { 1 } : = U ( \varepsilon ) \oplus ( 0 )$;

$L_{ - 1} : = ( 0 ) \oplus U ( \varepsilon )$;

$L_0$ equal to the linear span of the endomorphisms

\begin{equation*} \left( \begin{array} { c c } { L ( a , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , a ) } \end{array} \right); \end{equation*}

$L_{ - 2}$ equal to the linear span of the endomorphisms

\begin{equation*} \left( \begin{array} { r r } { 0 } & { 0 } \\ { - \varepsilon K ( c , d ) } & { 0 } \end{array} \right). \end{equation*}

Then one obtains the decomposition

\begin{equation*} L ( \varepsilon ) = L _ { - 2 } \bigoplus L _ { - 1 } \bigoplus L _ { 0 } \bigoplus L _ { 1 } \bigoplus L _ { 2 }, \end{equation*}

and, more precisely,

\begin{equation*} \left[ \left( \begin{array} { c c } { \text{Id} } & { 0 } \\ { 0 } & { - \text{Id} } \end{array} \right) , L _ { i } \right] = i L _ { i } ( - 2 \leq i \leq 2 ). \end{equation*}

These results imply the dimensional formula

\begin{equation*} \operatorname { dim } _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )+ \end{equation*}

\begin{equation*} + \operatorname { dim } _ { \Phi } \{ L ( x , y ) \} _ { \operatorname { span } } = \end{equation*}

\begin{equation*} = \operatorname { dim } _ { \Phi } T ( \varepsilon ) + \operatorname { dim } _ { \Phi } \operatorname { Inn } \operatorname { Der } T ( \varepsilon ). \end{equation*}

This algebra $L ( \varepsilon )$ is called the Lie algebra associated with $U ( \varepsilon )$.

The concepts of a triple system and a supertriple system are important in the theory of quarks and Yang–Baxter equations.

Note that a "triple system" in the sense discussed above is totally different from "triple system" in combinatorics (see, e.g., Steiner triple system).

References

[a1] H. Freudenthal, "Beziehungen der $E _ { 7 }$ und $E _ { 8 }$ zur Oktavenebene I–II" Indag. Math. , 16 (1954) pp. 218–230; 363–386
[a2] N. Kamiya, "The construction of all simple Lie algebras over $C$ from balanced Freudenthal–Kantor triple systems" , Contributions to General Algebra , 7 , Hölder–Pichler–Tempsky, Wien (1991) pp. 205–213
[a3] N. Kamiya, "On Freudenthal–Kantor triple systems and generalized structurable algebras" , Non-Associative Algebra and Its Applications , Kluwer Acad. Publ. (1994) pp. 198–203
[a4] N. Kamiya, S. Okubo, "On $\delta$-Lie supertriple systems associated with $( \varepsilon , \delta )$-Freudenthal–Kantor supertriple systems" Proc. Edinburgh Math. Soc. , 43 (2000) pp. 243–260
[a5] I.L. Kantor, "Models of exceptional Lie algebras" Soviet Math. Dokl. , 14 (1973) pp. 254–258
[a6] S. Okubo, "Introduction to octonion and other non-associative algebras in physics" , Cambridge Univ. Press (1995)
[a7] K. Yamaguti, "On the metasymplectic geometry and triple systems" Surikaisekikenkyusho Kokyuroku, Res. Inst. Math. Sci. Kyoto Univ. , 306 (1977) pp. 55–92 (In Japanese)
How to Cite This Entry:
Freudenthal-Kantor triple system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Freudenthal-Kantor_triple_system&oldid=16062
This article was adapted from an original article by Noriaki Kamiya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article