Difference between revisions of "Kellogg theorem"
(Importing text file) |
m (fixing spaces) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0551701.png | ||
+ | $#A+1 = 25 n = 0 | ||
+ | $#C+1 = 25 : ~/encyclopedia/old_files/data/K055/K.0505170 Kellogg theorem | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ w = f ( z) $ | |
+ | be a function realizing a univalent [[Conformal mapping|conformal mapping]] of the disc $ \{ {z \in \mathbf C } : {| z | < 1 } \} $ | ||
+ | onto a domain $ D $ | ||
+ | bounded by a smooth closed Jordan curve $ S $ | ||
+ | for which the angle of inclination $ \theta ( l) $ | ||
+ | of the tangent to the real axis, as a function of the arc length $ l $ | ||
+ | of $ S $, | ||
+ | satisfies a [[Hölder condition|Hölder condition]]: | ||
− | + | $$ | |
+ | | \theta ( l _ {1} ) - \theta ( l _ {2} ) | \leq \ | ||
+ | K | l _ {1} - l _ {2} | ^ \alpha ,\ \ | ||
+ | 0 < \alpha < 1 . | ||
+ | $$ | ||
− | + | Then the derivative $ f ^ { \prime } ( z) $ | |
+ | is continuous in the closed disc $ | z | \leq 1 $, | ||
+ | and on the circle $ | z | = 1 $ | ||
+ | the following Hölder conditions hold, with the same exponent $ \alpha $: | ||
− | Kellogg's theorem is a direct corollary of more general results by O.D. Kellogg (see [[#References|[1]]], [[#References|[2]]]) on the boundary behaviour of the partial derivatives of orders | + | $$ |
+ | | f ^ { \prime } ( e ^ {i \theta _ {1} } ) | ||
+ | - f ^ { \prime } ( e ^ {i \theta _ {2} } ) | | ||
+ | \leq K _ {1} | \theta _ {1} - \theta _ {2} | ^ \alpha , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | | \mathop{\rm ln} f ^ { \prime } ( e ^ {i \theta _ {1} } ) - | ||
+ | \mathop{\rm ln} f ^ { \prime } ( e ^ {i \theta _ {2} } ) | | ||
+ | \leq K _ {2} | \theta _ {1} - \theta _ {2} | ^ \alpha . | ||
+ | $$ | ||
+ | |||
+ | Kellogg's theorem is a direct corollary of more general results by O.D. Kellogg (see [[#References|[1]]], [[#References|[2]]]) on the boundary behaviour of the partial derivatives of orders $ r \leq 1 $ | ||
+ | of a [[Harmonic function|harmonic function]] $ u $ | ||
+ | that is a solution of the [[Dirichlet problem|Dirichlet problem]] for a domain $ D $ | ||
+ | in Euclidean space $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 2 $, | ||
+ | bounded by a sufficiently-smooth Lyapunov surface $ S $ (for $ n \geq 3 $) | ||
+ | or a Lyapunov curve $ S $ (for $ n = 2 $; | ||
+ | see [[Lyapunov surfaces and curves|Lyapunov surfaces and curves]]), where the given function $ f $ | ||
+ | is also assumed to be sufficiently smooth on the boundary $ S $. | ||
Other results on the boundary behaviour of the derivative of the mapping function can be found in [[#References|[3]]], [[#References|[4]]]. | Other results on the boundary behaviour of the derivative of the mapping function can be found in [[#References|[3]]], [[#References|[4]]]. | ||
Line 15: | Line 57: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O.D. Kellogg, "Harmonic functions and Green's integral" ''Trans. Amer. Math. Soc.'' , '''13''' : 1 (1912) pp. 109–132</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O.D. Kellogg, "On the derivatives of harmonic functions on the boundary" ''Trans. Amer. Math. Soc.'' , '''33''' : 2 (1931) pp. 486–510</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.E. Warschawski, "On differentiability at the boundary in conformal mapping" ''Proc. Amer. Math. Soc.'' , '''12''' (1961) pp. 614–620</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O.D. Kellogg, "Harmonic functions and Green's integral" ''Trans. Amer. Math. Soc.'' , '''13''' : 1 (1912) pp. 109–132</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O.D. Kellogg, "On the derivatives of harmonic functions on the boundary" ''Trans. Amer. Math. Soc.'' , '''33''' : 2 (1931) pp. 486–510</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S.E. Warschawski, "On differentiability at the boundary in conformal mapping" ''Proc. Amer. Math. Soc.'' , '''12''' (1961) pp. 614–620</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 01:08, 19 March 2022
Let $ w = f ( z) $
be a function realizing a univalent conformal mapping of the disc $ \{ {z \in \mathbf C } : {| z | < 1 } \} $
onto a domain $ D $
bounded by a smooth closed Jordan curve $ S $
for which the angle of inclination $ \theta ( l) $
of the tangent to the real axis, as a function of the arc length $ l $
of $ S $,
satisfies a Hölder condition:
$$ | \theta ( l _ {1} ) - \theta ( l _ {2} ) | \leq \ K | l _ {1} - l _ {2} | ^ \alpha ,\ \ 0 < \alpha < 1 . $$
Then the derivative $ f ^ { \prime } ( z) $ is continuous in the closed disc $ | z | \leq 1 $, and on the circle $ | z | = 1 $ the following Hölder conditions hold, with the same exponent $ \alpha $:
$$ | f ^ { \prime } ( e ^ {i \theta _ {1} } ) - f ^ { \prime } ( e ^ {i \theta _ {2} } ) | \leq K _ {1} | \theta _ {1} - \theta _ {2} | ^ \alpha , $$
$$ | \mathop{\rm ln} f ^ { \prime } ( e ^ {i \theta _ {1} } ) - \mathop{\rm ln} f ^ { \prime } ( e ^ {i \theta _ {2} } ) | \leq K _ {2} | \theta _ {1} - \theta _ {2} | ^ \alpha . $$
Kellogg's theorem is a direct corollary of more general results by O.D. Kellogg (see [1], [2]) on the boundary behaviour of the partial derivatives of orders $ r \leq 1 $ of a harmonic function $ u $ that is a solution of the Dirichlet problem for a domain $ D $ in Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, bounded by a sufficiently-smooth Lyapunov surface $ S $ (for $ n \geq 3 $) or a Lyapunov curve $ S $ (for $ n = 2 $; see Lyapunov surfaces and curves), where the given function $ f $ is also assumed to be sufficiently smooth on the boundary $ S $.
Other results on the boundary behaviour of the derivative of the mapping function can be found in [3], [4].
References
[1] | O.D. Kellogg, "Harmonic functions and Green's integral" Trans. Amer. Math. Soc. , 13 : 1 (1912) pp. 109–132 |
[2] | O.D. Kellogg, "On the derivatives of harmonic functions on the boundary" Trans. Amer. Math. Soc. , 33 : 2 (1931) pp. 486–510 |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[4] | S.E. Warschawski, "On differentiability at the boundary in conformal mapping" Proc. Amer. Math. Soc. , 12 (1961) pp. 614–620 |
Comments
See also Conformal mapping, boundary properties of a.
See [a1], p.15, for a similar problem.
References
[a1] | M. Brélot, "Eléments de la théorie classique du potentiel" , Sorbonne Univ. Centre Doc. Univ. , Paris (1959) |
Kellogg theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kellogg_theorem&oldid=15965