|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | The problem of finding the minimum of the area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639901.png" /> of a [[Riemann surface|Riemann surface]] to which a given domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639902.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639903.png" />-plane is mapped by a one-to-one regular function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639904.png" /> of a given class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639905.png" />, that is, the problem of finding
| + | <!-- |
| + | m0639901.png |
| + | $#A+1 = 32 n = 0 |
| + | $#C+1 = 32 : ~/encyclopedia/old_files/data/M063/M.0603990 Minimization of an area |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639906.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639907.png" /> is the surface element). The integral in (*), taken over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639908.png" />, is understood as the limit of integrals over domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399010.png" /> which exhaust the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399011.png" />, that is, are such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399013.png" /> and such that any closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399014.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399015.png" /> from some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399016.png" /> onwards.
| + | The problem of finding the minimum of the area $ A ( F ) $ |
| + | of a [[Riemann surface|Riemann surface]] to which a given domain $ B $ |
| + | of the $ z $-plane is mapped by a one-to-one regular function $ F $ |
| + | of a given class $ R $, |
| + | that is, the problem of finding |
| | | |
− | When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399017.png" /> is the class of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399020.png" />, regular in a given simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399021.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399022.png" /> and having more than one boundary point, the minimum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399023.png" /> of the areas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399024.png" /> of the images of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399025.png" /> in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399026.png" /> is given by the unique function univalently mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399027.png" /> onto the full disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399029.png" /> is the conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399030.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399031.png" /> (cf. [[Conformal radius of a domain|Conformal radius of a domain]]); moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399032.png" />.
| + | $$ \tag{* } |
| + | \min _ {F \in R } A ( F ) = \min _ {F |
| + | \in R } \ |
| + | \iint_ { B } | F ^ { \prime } ( z) | ^ {2} d \sigma |
| + | $$ |
| + | |
| + | ( $ d \sigma $ |
| + | is the surface element). The integral in (*), taken over $ B $, |
| + | is understood as the limit of integrals over domains $ B _ {n} $, |
| + | $ n = 1 , 2 \dots $ |
| + | which exhaust the domain $ B $, |
| + | that is, are such that $ \overline{B} _ {n} \subset B $, |
| + | $ B _ {n} \subset B _ {n+1} $ |
| + | and such that any closed set $ E \subset B $ |
| + | lies in $ B _ {n} $ |
| + | from some $ n $ |
| + | onwards. |
| + | |
| + | When $ R $ |
| + | is the class of functions $ F ( z) $, |
| + | $ F ( 0) = 0 $, |
| + | $ F ^ { \prime } ( 0) = 1 $, |
| + | regular in a given simply-connected domain $ B $ |
| + | containing $ z = 0 $ |
| + | and having more than one boundary point, the minimum $ A $ |
| + | of the areas $ A ( F ) $ |
| + | of the images of $ B $ |
| + | in the class $ R $ |
| + | is given by the unique function univalently mapping $ B $ |
| + | onto the full disc $ | z | < r $, |
| + | where $ r $ |
| + | is the conformal radius of $ B $ |
| + | at $ z = 0 $( |
| + | cf. [[Conformal radius of a domain|Conformal radius of a domain]]); moreover, $ A = \pi r ^ {2} $. |
| | | |
| The problem of finding the minimal area of the image of a multiply-connected domain has also been considered (see [[#References|[1]]]). | | The problem of finding the minimal area of the image of a multiply-connected domain has also been considered (see [[#References|[1]]]). |
The problem of finding the minimum of the area $ A ( F ) $
of a Riemann surface to which a given domain $ B $
of the $ z $-plane is mapped by a one-to-one regular function $ F $
of a given class $ R $,
that is, the problem of finding
$$ \tag{* }
\min _ {F \in R } A ( F ) = \min _ {F
\in R } \
\iint_ { B } | F ^ { \prime } ( z) | ^ {2} d \sigma
$$
( $ d \sigma $
is the surface element). The integral in (*), taken over $ B $,
is understood as the limit of integrals over domains $ B _ {n} $,
$ n = 1 , 2 \dots $
which exhaust the domain $ B $,
that is, are such that $ \overline{B} _ {n} \subset B $,
$ B _ {n} \subset B _ {n+1} $
and such that any closed set $ E \subset B $
lies in $ B _ {n} $
from some $ n $
onwards.
When $ R $
is the class of functions $ F ( z) $,
$ F ( 0) = 0 $,
$ F ^ { \prime } ( 0) = 1 $,
regular in a given simply-connected domain $ B $
containing $ z = 0 $
and having more than one boundary point, the minimum $ A $
of the areas $ A ( F ) $
of the images of $ B $
in the class $ R $
is given by the unique function univalently mapping $ B $
onto the full disc $ | z | < r $,
where $ r $
is the conformal radius of $ B $
at $ z = 0 $(
cf. Conformal radius of a domain); moreover, $ A = \pi r ^ {2} $.
The problem of finding the minimal area of the image of a multiply-connected domain has also been considered (see [1]).
References
[1] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |