Difference between revisions of "Pseudo-tensor"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0758501.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/P075/P.0705850 Pseudo\AAhtensor | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A tensor considered up to multiplication by an arbitrary function (cf. [[Tensor on a vector space|Tensor on a vector space]]). | A tensor considered up to multiplication by an arbitrary function (cf. [[Tensor on a vector space|Tensor on a vector space]]). | ||
====Comments==== | ====Comments==== | ||
− | More precisely, a pseudo-tensor (also called relative tensor) is a quantity | + | More precisely, a pseudo-tensor (also called relative tensor) is a quantity $ p _ {j _ {1} \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } $ |
+ | which under a coordinate change transforms as | ||
+ | |||
+ | $$ | ||
+ | \overline{p}\; {} _ {j _ {1} \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } = \ | ||
+ | \tau ( \overline{x}\; ) | ||
+ | p _ {k _ {1} \dots k _ {n} } ^ {l _ {1} \dots l _ {m} } | ||
+ | |||
+ | \frac{\partial \overline{x}\; {} ^ {i _ {1} } }{\partial x ^ {l _ {1} } } | ||
+ | \dots | ||
+ | \frac{\partial | ||
+ | \overline{x}\; {} ^ {i _ {m} } }{\partial x ^ {l _ {m} } } | ||
+ | \cdot | ||
− | + | \frac{\partial x ^ {k _ {1} } }{\partial \overline{x}\; {} ^ {j _ {1} } } | |
+ | \dots | ||
+ | \frac{\partial | ||
+ | x ^ {k _ {n} } }{\partial \overline{x}\, {} ^ {j _ {n} } } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ \tau $ |
+ | is a scalar-valued function. Most frequently (in applications), the function $ \tau $ | ||
+ | depends in a simple manner on the Jacobian determinant $ \Delta = \mathop{\rm det} ( {\partial \overline{x}\; {} ^ {i} } / {\partial x ^ {j} } ) $ | ||
+ | of the coordinate transformation. In [[#References|[a1]]] the following cases are distinguished: | ||
− | i) | + | i) $ \tau = \Delta ^ {-w} \overline \Delta \, {} ^ {- w ^ \prime } $, |
+ | a tensor $ \Delta $-density of weight $ w $ | ||
+ | and anti-weight $ w ^ \prime $; | ||
− | ii) | + | ii) $ \tau = | \Delta | ^ {w} $, |
+ | a tensor density of weight $ w $; | ||
− | iii) | + | iii) $ \tau = \Delta / | \Delta | $, |
+ | a $ W $- | ||
+ | tensor. | ||
− | Here | + | Here $ \overline \Delta $ |
+ | is the complex conjugate of $ \Delta $. | ||
+ | A tensor density of weight zero is an ordinary tensor (cf. [[Tensor on a vector space|Tensor on a vector space]]). | ||
− | In [[#References|[a2]]] a tensor | + | In [[#References|[a2]]] a tensor $ \Delta $-density of weight 1 and anti-weight 0 is called a tensor density and a tensor $ \Delta $-density of weight $ - 1 $ |
+ | and anti-weight 0 a tensor capacity. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) pp. 11ff (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Sauer (ed.) I. Szabó (ed.) , ''Mathematische Hilfsmittel des Ingenieurs'' , '''III''' , Springer (1968) pp. Sect. G.II.6</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) pp. 11ff (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> R. Sauer (ed.) I. Szabó (ed.) , ''Mathematische Hilfsmittel des Ingenieurs'' , '''III''' , Springer (1968) pp. Sect. G.II.6</TD></TR></table> |
Latest revision as of 17:42, 3 January 2021
A tensor considered up to multiplication by an arbitrary function (cf. Tensor on a vector space).
Comments
More precisely, a pseudo-tensor (also called relative tensor) is a quantity $ p _ {j _ {1} \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } $ which under a coordinate change transforms as
$$ \overline{p}\; {} _ {j _ {1} \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } = \ \tau ( \overline{x}\; ) p _ {k _ {1} \dots k _ {n} } ^ {l _ {1} \dots l _ {m} } \frac{\partial \overline{x}\; {} ^ {i _ {1} } }{\partial x ^ {l _ {1} } } \dots \frac{\partial \overline{x}\; {} ^ {i _ {m} } }{\partial x ^ {l _ {m} } } \cdot \frac{\partial x ^ {k _ {1} } }{\partial \overline{x}\; {} ^ {j _ {1} } } \dots \frac{\partial x ^ {k _ {n} } }{\partial \overline{x}\, {} ^ {j _ {n} } } , $$
where $ \tau $ is a scalar-valued function. Most frequently (in applications), the function $ \tau $ depends in a simple manner on the Jacobian determinant $ \Delta = \mathop{\rm det} ( {\partial \overline{x}\; {} ^ {i} } / {\partial x ^ {j} } ) $ of the coordinate transformation. In [a1] the following cases are distinguished:
i) $ \tau = \Delta ^ {-w} \overline \Delta \, {} ^ {- w ^ \prime } $, a tensor $ \Delta $-density of weight $ w $ and anti-weight $ w ^ \prime $;
ii) $ \tau = | \Delta | ^ {w} $, a tensor density of weight $ w $;
iii) $ \tau = \Delta / | \Delta | $, a $ W $- tensor.
Here $ \overline \Delta $ is the complex conjugate of $ \Delta $. A tensor density of weight zero is an ordinary tensor (cf. Tensor on a vector space).
In [a2] a tensor $ \Delta $-density of weight 1 and anti-weight 0 is called a tensor density and a tensor $ \Delta $-density of weight $ - 1 $ and anti-weight 0 a tensor capacity.
References
[a1] | J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) pp. 11ff (Translated from German) |
[a2] | R. Sauer (ed.) I. Szabó (ed.) , Mathematische Hilfsmittel des Ingenieurs , III , Springer (1968) pp. Sect. G.II.6 |
Pseudo-tensor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-tensor&oldid=15700