Difference between revisions of "Weyl connection"
(Importing text file) |
(eqref) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | w0976901.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/W097/W.0907690 Weyl connection | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A torsion-free [[Affine connection|affine connection]] on a [[Riemannian space|Riemannian space]] $ M $ | |
+ | which is a generalization of the [[Levi-Civita connection|Levi-Civita connection]] in the sense that the corresponding [[Covariant differential|covariant differential]] of the metric tensor $ g _ {ij} $ | ||
+ | of $ M $ | ||
+ | is not necessarily equal to zero, but is proportional to $ g _ {ij} $. | ||
+ | If the affine connection on $ M $ | ||
+ | is given by the matrix of local connection forms | ||
− | + | \begin{equation} \label{eq1} | |
+ | \left . \begin{array}{rcl} | ||
+ | \omega^i &=& \Gamma^i_k (x) dx^k\,,\ \ \det|\Gamma^i_k| \ne 0 \\ | ||
+ | \omega^i_j &=& \Gamma^i_{jk} \omega^k | ||
+ | \end{array} | ||
+ | \right\rbrace | ||
+ | \end{equation} | ||
+ | |||
+ | and $ ds ^ {2} = g _ {ij} \omega ^ {i} \omega ^ {j} $, | ||
+ | it will be a Weyl connection if and only if | ||
+ | |||
+ | \begin{equation} \label{eq2} | ||
+ | dg _ {ij} = g _ {kj} \omega _ {i} ^ {k} + | ||
+ | g _ {ik} \omega _ {j} ^ {k} + \theta g _ {ij} . | ||
+ | \end{equation} | ||
Another, equivalent, form of this condition is: | Another, equivalent, form of this condition is: | ||
− | + | $$ | |
+ | Z \langle X, Y \rangle = \langle \nabla _ {Z} X, Y \rangle + \langle X, \nabla _ {Z} Y \rangle + | ||
+ | \theta ( Z) \langle X, Y\rangle , | ||
+ | $$ | ||
+ | |||
+ | where $ \nabla _ {Z} X $, | ||
+ | the [[covariant derivative]] of $ X $ | ||
+ | with respect to $ Z $, | ||
+ | is defined by the formula | ||
− | + | $$ | |
+ | \omega ^ {i} ( \nabla _ {Z} X) = \ | ||
+ | Z \omega ^ {i} ( X) + \omega _ {k} ^ {i} ( Z) \omega ^ {k} ( X). | ||
+ | $$ | ||
− | + | With respect to a local field of orthonormal coordinates, where $ g _ {ij} = \delta _ {ij} $, | |
+ | the following equation is valid: | ||
− | + | $$ | |
+ | \omega _ {i} ^ {j} + \omega _ {j} ^ {i} + \delta _ {j} ^ {i} \theta = 0, | ||
+ | $$ | ||
− | + | i.e. any torsion-free affine connection whose [[Holonomy group|holonomy group]] is the group of similitudes or one of its subgroups is a Weyl connection for some Riemannian metric on $ M $. | |
− | i | + | If in \eqref{eq1} $ \omega ^ {i} = dx ^ {i} $, |
+ | then for a Weyl connection | ||
− | + | $$ | |
+ | \Gamma _ {jk} ^ {i} = | ||
+ | \frac{1}{2} | ||
+ | g ^ {il} | ||
+ | \left ( | ||
+ | \frac{\partial g _ {lj} }{\partial x ^ {k} } | ||
− | + | + | |
+ | \frac{\partial g _ {lk} }{\partial x ^ {j} } | ||
+ | - | ||
− | + | \frac{\partial g _ {jk} }{\partial x ^ {l} } | |
+ | \right ) - | ||
+ | \frac{1}{2} | ||
− | + | g ^ {il} g _ {jk} \theta _ {l} + | |
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | |||
+ | \frac{1}{2} | ||
+ | ( \delta _ {j} ^ {i} \phi _ {k} + \delta _ {k} ^ {i} \phi _ {j} ) , | ||
+ | $$ | ||
+ | |||
+ | where $ \theta = \theta _ {k} dx ^ {k} $. | ||
+ | Since | ||
+ | |||
+ | $$ | ||
+ | g _ {kj} \Omega _ {i} ^ {k} + | ||
+ | g _ {ik} \Omega _ {j} ^ {k} + | ||
+ | g _ {ij} d \theta = 0, | ||
+ | $$ | ||
the tensor | the tensor | ||
− | + | $$ | |
+ | F _ {ij,kl} = \ | ||
+ | g _ {im} R _ {jkl} ^ {m} + | ||
+ | \frac{1}{2} | ||
+ | |||
+ | g _ {ij} ( \nabla _ {k} \theta _ {l} - \nabla _ {l} \theta _ {k} ) , | ||
+ | $$ | ||
called the directional curvature tensor by H. Weyl, is anti-symmetric with respect to both pairs of indices: | called the directional curvature tensor by H. Weyl, is anti-symmetric with respect to both pairs of indices: | ||
− | + | $$ | |
+ | F _ {ij,kl} + F _ {ji,kl} = 0 . | ||
+ | $$ | ||
Weyl connections were introduced by Weyl [[#References|[1]]]. | Weyl connections were introduced by Weyl [[#References|[1]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Weyl, "Reine Infinitesimalgeometrie" ''Math. Z.'' , '''2''' (1918) pp. 384–411</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian) {{ZBL|0925.53007}}</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> G.B. Folland, "Weyl manifolds" ''J. Differential Geom.'' , '''4''' (1970) pp. 145–153</TD></TR> | ||
+ | </table> |
Latest revision as of 05:46, 11 April 2024
A torsion-free affine connection on a Riemannian space $ M $
which is a generalization of the Levi-Civita connection in the sense that the corresponding covariant differential of the metric tensor $ g _ {ij} $
of $ M $
is not necessarily equal to zero, but is proportional to $ g _ {ij} $.
If the affine connection on $ M $
is given by the matrix of local connection forms
\begin{equation} \label{eq1} \left . \begin{array}{rcl} \omega^i &=& \Gamma^i_k (x) dx^k\,,\ \ \det|\Gamma^i_k| \ne 0 \\ \omega^i_j &=& \Gamma^i_{jk} \omega^k \end{array} \right\rbrace \end{equation}
and $ ds ^ {2} = g _ {ij} \omega ^ {i} \omega ^ {j} $, it will be a Weyl connection if and only if
\begin{equation} \label{eq2} dg _ {ij} = g _ {kj} \omega _ {i} ^ {k} + g _ {ik} \omega _ {j} ^ {k} + \theta g _ {ij} . \end{equation}
Another, equivalent, form of this condition is:
$$ Z \langle X, Y \rangle = \langle \nabla _ {Z} X, Y \rangle + \langle X, \nabla _ {Z} Y \rangle + \theta ( Z) \langle X, Y\rangle , $$
where $ \nabla _ {Z} X $, the covariant derivative of $ X $ with respect to $ Z $, is defined by the formula
$$ \omega ^ {i} ( \nabla _ {Z} X) = \ Z \omega ^ {i} ( X) + \omega _ {k} ^ {i} ( Z) \omega ^ {k} ( X). $$
With respect to a local field of orthonormal coordinates, where $ g _ {ij} = \delta _ {ij} $, the following equation is valid:
$$ \omega _ {i} ^ {j} + \omega _ {j} ^ {i} + \delta _ {j} ^ {i} \theta = 0, $$
i.e. any torsion-free affine connection whose holonomy group is the group of similitudes or one of its subgroups is a Weyl connection for some Riemannian metric on $ M $.
If in \eqref{eq1} $ \omega ^ {i} = dx ^ {i} $, then for a Weyl connection
$$ \Gamma _ {jk} ^ {i} = \frac{1}{2} g ^ {il} \left ( \frac{\partial g _ {lj} }{\partial x ^ {k} } + \frac{\partial g _ {lk} }{\partial x ^ {j} } - \frac{\partial g _ {jk} }{\partial x ^ {l} } \right ) - \frac{1}{2} g ^ {il} g _ {jk} \theta _ {l} + $$
$$ + \frac{1}{2} ( \delta _ {j} ^ {i} \phi _ {k} + \delta _ {k} ^ {i} \phi _ {j} ) , $$
where $ \theta = \theta _ {k} dx ^ {k} $. Since
$$ g _ {kj} \Omega _ {i} ^ {k} + g _ {ik} \Omega _ {j} ^ {k} + g _ {ij} d \theta = 0, $$
the tensor
$$ F _ {ij,kl} = \ g _ {im} R _ {jkl} ^ {m} + \frac{1}{2} g _ {ij} ( \nabla _ {k} \theta _ {l} - \nabla _ {l} \theta _ {k} ) , $$
called the directional curvature tensor by H. Weyl, is anti-symmetric with respect to both pairs of indices:
$$ F _ {ij,kl} + F _ {ji,kl} = 0 . $$
Weyl connections were introduced by Weyl [1].
References
[1] | H. Weyl, "Reine Infinitesimalgeometrie" Math. Z. , 2 (1918) pp. 384–411 |
[2] | A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian) Zbl 0925.53007 |
[3] | G.B. Folland, "Weyl manifolds" J. Differential Geom. , 4 (1970) pp. 145–153 |
Weyl connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weyl_connection&oldid=15696