Difference between revisions of "Kelvin functions"
(Importing text file) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | k0551801.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/K055/K.0505180 Kelvin functions, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Thomson functions'' | ''Thomson functions'' | ||
− | The functions | + | The functions $ \mathop{\rm ber} ( z) $ |
+ | and $ \mathop{\rm bei} ( z) $, | ||
+ | $ \mathop{\rm her} ( z) $ | ||
+ | and $ \mathop{\rm hei} ( z) $, | ||
+ | $ \mathop{\rm ker} ( z) $ | ||
+ | and $ \mathop{\rm kei} ( z) $, | ||
+ | defined by | ||
− | + | $$ | |
+ | \mathop{\rm ber} _ \nu ( z) \pm \mathop{\rm bei} _ \nu ( z) = J _ \nu ( z e ^ {\pm 3 i \pi / 4 } ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm her} _ \nu ( z) + i \mathop{\rm hei} _ \nu ( z) = H _ \nu ^ {( 1)} ( z e ^ {3 i \pi / 4 } ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm her} _ \nu ( z) - i \mathop{\rm hei} _ \nu ( z) = H _ \nu ^ {( 2)} ( z e ^ {- 3 i \pi / 4 } ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm ker} _ \nu ( z) + i \mathop{\rm kei} _ \nu ( z) = | ||
+ | \frac{i \pi }{2} H _ \nu ^ {( 1)} ( z e ^ {3 i \pi / 4 } ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm ker} _ \nu ( z) - i \mathop{\rm kei} _ \nu ( z) = - | ||
+ | \frac{i \pi }{2} H _ \nu ^ {( 2)} ( z e ^ {- 3 i \pi / 4 } ) , | ||
+ | $$ | ||
− | where the | + | where the $ H _ \nu $ |
+ | are the [[Hankel functions]] and the $ J _ \nu $ | ||
+ | are the [[Bessel functions]]. When $ \nu = 0 $ | ||
+ | the index is omitted. The Kelvin functions form a [[fundamental system of solutions]] of the equation | ||
− | + | $$ | |
+ | z ^ {2} y ^ {\prime\prime} + z y ^ \prime - ( i z ^ {2} + \nu ^ {2} ) y = 0 , | ||
+ | $$ | ||
− | which for | + | which for $ z = \sqrt i x $ |
+ | turns into the Bessel equation. | ||
The series representations are: | The series representations are: | ||
− | + | $$ | |
+ | \mathop{\rm ber} ( z) = \ | ||
+ | \sum _ {k=0}^ \infty | ||
+ | |||
+ | \frac{( - 1 ) ^ {k} z ^ {4k} }{2 ^ {4k} [ ( 2 k ) ! ] ^ {2} } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm ber} ( z) = \sum _ {k=0} ^ \infty | ||
+ | \frac{( - 1 ) ^ {k} z ^ {4k+} 2 }{2 ^ {4k+} 2 [ ( 2 k + 1 ) ! ] ^ {2} } | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm ker} ( z) = \left ( \mathop{\rm ln} | ||
+ | \frac{2}{z} | ||
+ | - C \right | ||
+ | ) \mathop{\rm ber} ( z) + | ||
+ | \frac \pi {4} | ||
+ | \mathop{\rm bei} ( z) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum _ {k=0} ^ \infty ( - 1 ) ^ {k} | ||
+ | \frac{z ^ {4k} }{ | ||
+ | 2 ^ {4k} [ ( 2 k ) ! ] ^ {2} } | ||
+ | \sum _ { m= 1} ^ { 2k } | ||
+ | \frac{1}{m} | ||
+ | , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm kei} ( z) = \left ( \mathop{\rm ln} | ||
+ | \frac{2}{z} | ||
+ | - C \right | ||
+ | ) \mathop{\rm bei} ( z) - | ||
+ | \frac \pi {4} | ||
+ | \mathop{\rm ber} ( z) + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum _ {k=0}^ \infty ( - 1 ) ^ {k} | ||
+ | \frac{z ^ {4k+} 2 }{2 ^ {4k+} 2 [ ( 2 k + 1 ) ! ] ^ {2} } | ||
+ | \sum _ { m= 1} ^ { 2k+ 1 } | ||
+ | \frac{1}{m} | ||
+ | . | ||
+ | $$ | ||
The asymptotic representations are: | The asymptotic representations are: | ||
− | + | $$ | |
+ | \mathop{\rm ber} ( z) = \ | ||
+ | |||
+ | \frac{e ^ {\alpha ( z) } }{\sqrt {2 \pi z } } | ||
+ | \ | ||
+ | \cos \beta ( z) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm ber} ( z) = | ||
+ | \frac{e ^ {\alpha ( z) } }{ | ||
+ | \sqrt {2 \pi z } } | ||
+ | \sin \beta ( z) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm ker} ( z) = \sqrt { | ||
+ | \frac \pi {2z} | ||
+ | } e ^ {\alpha ( | ||
+ | - z ) } \cos \beta ( - z ) , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm kei} ( z) = \sqrt { | ||
+ | \frac \pi {2z} | ||
+ | } e ^ {\alpha ( | ||
+ | - z ) } \sin \beta ( - z ) , | ||
+ | $$ | ||
− | < | + | $$ |
+ | | \mathop{\rm arg} z | < | ||
+ | \frac{5}{4} | ||
+ | \pi , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
− | + | \alpha ( z) \sim \ | |
− | |||
− | + | \frac{z}{\sqrt 2 } | |
+ | + | ||
− | + | \frac{1}{8 z \sqrt 2 } | |
− | + | - | |
+ | \frac{25}{384 z ^ {3} \sqrt 2 } | ||
+ | - | ||
+ | \frac{13}{128 z ^ {4} } | ||
+ | - \dots , | ||
+ | $$ | ||
− | + | $$ | |
+ | \beta ( z) \sim | ||
+ | \frac{z}{\sqrt 2} | ||
+ | - | ||
+ | \frac \pi {8} | ||
+ | - | ||
+ | \frac{1}{8 z | ||
+ | \sqrt 2 } | ||
+ | - | ||
+ | \frac{1}{384 z ^ {3} \sqrt 2 } | ||
+ | + \dots . | ||
+ | $$ | ||
+ | These functions were introduced by W. Thomson (Lord Kelvin, [[#References|[1]]]). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> W. Thomson, "Mathematical and physical papers" , '''3''' , Cambridge Univ. Press (1980) pp. 492</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> E. Jahnke, F. Emde, F. Lösch, "Tafeln höheren Funktionen" , Teubner (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.S. Gradshtein, I.M. Ryzhik, "Table of integrals, series and products" , Acad. Press (1973) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965)</TD></TR> | ||
+ | </table> |
Latest revision as of 08:25, 6 January 2024
Thomson functions
The functions $ \mathop{\rm ber} ( z) $ and $ \mathop{\rm bei} ( z) $, $ \mathop{\rm her} ( z) $ and $ \mathop{\rm hei} ( z) $, $ \mathop{\rm ker} ( z) $ and $ \mathop{\rm kei} ( z) $, defined by
$$ \mathop{\rm ber} _ \nu ( z) \pm \mathop{\rm bei} _ \nu ( z) = J _ \nu ( z e ^ {\pm 3 i \pi / 4 } ) , $$
$$ \mathop{\rm her} _ \nu ( z) + i \mathop{\rm hei} _ \nu ( z) = H _ \nu ^ {( 1)} ( z e ^ {3 i \pi / 4 } ) , $$
$$ \mathop{\rm her} _ \nu ( z) - i \mathop{\rm hei} _ \nu ( z) = H _ \nu ^ {( 2)} ( z e ^ {- 3 i \pi / 4 } ) , $$
$$ \mathop{\rm ker} _ \nu ( z) + i \mathop{\rm kei} _ \nu ( z) = \frac{i \pi }{2} H _ \nu ^ {( 1)} ( z e ^ {3 i \pi / 4 } ) , $$
$$ \mathop{\rm ker} _ \nu ( z) - i \mathop{\rm kei} _ \nu ( z) = - \frac{i \pi }{2} H _ \nu ^ {( 2)} ( z e ^ {- 3 i \pi / 4 } ) , $$
where the $ H _ \nu $ are the Hankel functions and the $ J _ \nu $ are the Bessel functions. When $ \nu = 0 $ the index is omitted. The Kelvin functions form a fundamental system of solutions of the equation
$$ z ^ {2} y ^ {\prime\prime} + z y ^ \prime - ( i z ^ {2} + \nu ^ {2} ) y = 0 , $$
which for $ z = \sqrt i x $ turns into the Bessel equation.
The series representations are:
$$ \mathop{\rm ber} ( z) = \ \sum _ {k=0}^ \infty \frac{( - 1 ) ^ {k} z ^ {4k} }{2 ^ {4k} [ ( 2 k ) ! ] ^ {2} } , $$
$$ \mathop{\rm ber} ( z) = \sum _ {k=0} ^ \infty \frac{( - 1 ) ^ {k} z ^ {4k+} 2 }{2 ^ {4k+} 2 [ ( 2 k + 1 ) ! ] ^ {2} } , $$
$$ \mathop{\rm ker} ( z) = \left ( \mathop{\rm ln} \frac{2}{z} - C \right ) \mathop{\rm ber} ( z) + \frac \pi {4} \mathop{\rm bei} ( z) + $$
$$ + \sum _ {k=0} ^ \infty ( - 1 ) ^ {k} \frac{z ^ {4k} }{ 2 ^ {4k} [ ( 2 k ) ! ] ^ {2} } \sum _ { m= 1} ^ { 2k } \frac{1}{m} , $$
$$ \mathop{\rm kei} ( z) = \left ( \mathop{\rm ln} \frac{2}{z} - C \right ) \mathop{\rm bei} ( z) - \frac \pi {4} \mathop{\rm ber} ( z) + $$
$$ + \sum _ {k=0}^ \infty ( - 1 ) ^ {k} \frac{z ^ {4k+} 2 }{2 ^ {4k+} 2 [ ( 2 k + 1 ) ! ] ^ {2} } \sum _ { m= 1} ^ { 2k+ 1 } \frac{1}{m} . $$
The asymptotic representations are:
$$ \mathop{\rm ber} ( z) = \ \frac{e ^ {\alpha ( z) } }{\sqrt {2 \pi z } } \ \cos \beta ( z) , $$
$$ \mathop{\rm ber} ( z) = \frac{e ^ {\alpha ( z) } }{ \sqrt {2 \pi z } } \sin \beta ( z) , $$
$$ \mathop{\rm ker} ( z) = \sqrt { \frac \pi {2z} } e ^ {\alpha ( - z ) } \cos \beta ( - z ) , $$
$$ \mathop{\rm kei} ( z) = \sqrt { \frac \pi {2z} } e ^ {\alpha ( - z ) } \sin \beta ( - z ) , $$
$$ | \mathop{\rm arg} z | < \frac{5}{4} \pi , $$
where
$$ \alpha ( z) \sim \ \frac{z}{\sqrt 2 } + \frac{1}{8 z \sqrt 2 } - \frac{25}{384 z ^ {3} \sqrt 2 } - \frac{13}{128 z ^ {4} } - \dots , $$
$$ \beta ( z) \sim \frac{z}{\sqrt 2} - \frac \pi {8} - \frac{1}{8 z \sqrt 2 } - \frac{1}{384 z ^ {3} \sqrt 2 } + \dots . $$
These functions were introduced by W. Thomson (Lord Kelvin, [1]).
References
[1] | W. Thomson, "Mathematical and physical papers" , 3 , Cambridge Univ. Press (1980) pp. 492 |
[2] | E. Jahnke, F. Emde, F. Lösch, "Tafeln höheren Funktionen" , Teubner (1966) |
[3] | I.S. Gradshtein, I.M. Ryzhik, "Table of integrals, series and products" , Acad. Press (1973) (Translated from Russian) |
[a1] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1965) |
Kelvin functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kelvin_functions&oldid=15392