Difference between revisions of "Isoperimetric inequality, classical"
(Importing text file) |
(latex details) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | i0528701.png | ||
+ | $#A+1 = 57 n = 0 | ||
+ | $#C+1 = 57 : ~/encyclopedia/old_files/data/I052/I.0502870 Isoperimetric inequality, classical | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The inequality between the volume $ V $ | |
+ | of a domain in a Euclidean space $ \mathbf R ^ {n} $, | ||
+ | $ n \geq 2 $, | ||
+ | and the $ ( n - 1) $-dimensional area $ F $ | ||
+ | of the hypersurface bounding the domain: | ||
− | + | $$ | |
+ | n ^ {n} v _ {n} V ^ {n - 1 } \leq F ^ { n } , | ||
+ | $$ | ||
− | + | where $ v _ {n} $ | |
+ | is the volume of the unit $ n $-sphere. Equality holds only for a sphere. The classical isoperimetric inequality gives a solution of the [[Isoperimetric problem|isoperimetric problem]]. For $ n = 2, 3 $ | ||
+ | the classical isoperimetric inequality was known in Antiquity. A rigorous proof of the classical isoperimetric inequality for $ n = 2 $ | ||
+ | was given by F. Edler in 1882, for $ n = 3 $ | ||
+ | by H.A. Schwarz in 1890, and for all $ n \geq 2 $ | ||
+ | by L.A. Lyusternik in 1935 and E. Schmidt in 1939 (see [[#References|[1]]], [[#References|[2]]], [[#References|[3]]]). | ||
− | for | + | While in the two-dimensional case there are many proofs of the classical isoperimetric inequality (see [[#References|[4]]]), only two approaches are known for $ n > 2 $. |
+ | The first is the method of symmetrization proposed by J. Steiner. Using this method, Schmidt obtained analogues of the classical isoperimetric inequality (and the Brunn–Minkowski inequalities) for spherical and hyperbolic $ n $-dimensional spaces (see [[#References|[5]]]). The second approach consists in reducing the classical isoperimetric inequality to a Brunn–Minkowski inequality (see [[Brunn–Minkowski theorem|Brunn–Minkowski theorem]]) and using the method of proportional division of volumes. In this approach there naturally arises the more general inequality | ||
+ | |||
+ | $$ \tag{* } | ||
+ | n ^ {n} V ^ {n - 1 } ( A) V ( B) \leq F ^ { n } ( A, B) | ||
+ | $$ | ||
+ | |||
+ | for volumes $ V ( A) $, | ||
+ | $ V ( B) $ | ||
+ | of two sets and the Minkowski area $ F ( A, B) $ | ||
+ | of the set $ A $ | ||
+ | with respect to $ B $. | ||
+ | The inequality (*) can be interpreted as a classical isoperimetric inequality in Minkowski space; equality for a fixed Minkowski "sphere" $ B $ | ||
+ | is not, generally speaking, attained for a unique body $ A $; | ||
+ | moreover, these bodies are different from a "sphere" (see [[#References|[6]]]). | ||
There are a number of generalizations of the classical isoperimetric inequality in which one does not consider domains with a piecewise-smooth boundary, but wider classes of sets, and the area of the boundary is considered in a generalized sense (Minkowski area, Lebesgue area, Caccioppoli–De Giorgi [[Perimeter|perimeter]] of a set, or the mass of a current, see [[#References|[7]]], [[#References|[8]]]). The classical isoperimetric inequality remains valid in all these cases, as well as for hypersurfaces with self-intersections and the corresponding oriented volume (see [[#References|[9]]]). These generalizations can be obtained from the classical isoperimetric inequality by limit transition for distinct variants of the concept of convergence. | There are a number of generalizations of the classical isoperimetric inequality in which one does not consider domains with a piecewise-smooth boundary, but wider classes of sets, and the area of the boundary is considered in a generalized sense (Minkowski area, Lebesgue area, Caccioppoli–De Giorgi [[Perimeter|perimeter]] of a set, or the mass of a current, see [[#References|[7]]], [[#References|[8]]]). The classical isoperimetric inequality remains valid in all these cases, as well as for hypersurfaces with self-intersections and the corresponding oriented volume (see [[#References|[9]]]). These generalizations can be obtained from the classical isoperimetric inequality by limit transition for distinct variants of the concept of convergence. | ||
− | For the isoperimetric difference | + | For the isoperimetric difference $ F ^ { n } - n ^ {n} v _ {n} V ^ {n - 1 } $, |
+ | and the isoperimetric ratio $ F ^ { n } V ^ {1 - n } $, | ||
+ | estimates are known which strengthen the classical isoperimetric inequality (see [[#References|[2]]]). Some of these estimates are obtained for sets of special shape, in the first place for convex sets (cf. [[Convex set|Convex set]]) and polyhedra (see [[#References|[10]]]). An example of this is the [[Bonnesen inequality|Bonnesen inequality]] for plane figures: | ||
− | + | $$ | |
+ | F ^ { 2 } - 4 \pi V \geq ( F - 4 \pi r) ^ {2} , | ||
+ | $$ | ||
− | where | + | where $ r $ |
+ | is the radius of the largest inscribed circle, and its generalization (see [[#References|[11]]]) for convex bodies in $ \mathbf R ^ {n} $: | ||
− | + | $$ | |
+ | F ^ { n/( n - 1) } ( A, B) - n ^ {n/( n - 1) } V ( A) | ||
+ | V ^ {1/( n - 1) } ( B) \geq | ||
+ | $$ | ||
− | + | $$ | |
+ | \geq \ | ||
+ | [ F ( A, B) - | ||
+ | n ^ {n/( n - 1) } qV ( B) ^ {1/( n - 1) } ] ^ {n} . | ||
+ | $$ | ||
− | Here | + | Here $ q = \max \{ \lambda : {\lambda B \textrm{ can be imbedded in } A } \} $. |
+ | The relative isoperimetric difference of two convex bodies, | ||
− | + | $$ | |
+ | F ^ { n } ( A, B) - n ^ {n} V ^ {n - 1 } ( A) V ( B) , | ||
+ | $$ | ||
can serve as a measure of their non-homotheticity (see [[#References|[12]]]). It is used, for example, in proving stability theorems in the [[Minkowski problem|Minkowski problem]] (see [[#References|[13]]]). For generalizations of the classical isoperimetric inequality to spaces of variable curvature and related inequalities, see [[Isoperimetric inequality|Isoperimetric inequality]]. | can serve as a measure of their non-homotheticity (see [[#References|[12]]]). It is used, for example, in proving stability theorems in the [[Minkowski problem|Minkowski problem]] (see [[#References|[13]]]). For generalizations of the classical isoperimetric inequality to spaces of variable curvature and related inequalities, see [[Isoperimetric inequality|Isoperimetric inequality]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.A. Kryzhanovskii, "Isoperimeters" , Moscow (1959) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Hadwiger, "Vorlesungen über Inhalt, Oberfläche und Isoperimetrie" , Springer (1957)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.A. Lyusternik, "Application of the Brunn–Minkowski inequality to extremal problems" ''Uspekhi Mat. Nauk'' , '''2''' (1936) pp. 47–54 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Reichardt, "Einführung in die Differentialgeometrie" , Springer (1960)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Schmidt, "Die Brunn–Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I" ''Math. Nachr.'' , '''1''' (1948) pp. 81–157</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H. Busemann, "The isoperimetric problem for Minkowski area" ''Amer. J. Math.'' , '''71''' (1949) pp. 743–762</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E. De Giorgi, "Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insience aventi frontiera orientata di misura finita" ''Atti Acad. Naz. Lincei Mem. Cl. Sci. Fis., Mat. e Natur.'' , '''8''' : 5, 2 (1958) pp. 33–44</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> H. Federer, W.H. Fleming, "Normal and integer currents" ''Ann. of Math. (2)'' , '''72''' (1960) pp. 458–520</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> T. Radó, "The isoperimetric inequality and the Lebesgue definition of surface area" ''Trans. Amer. Math. Soc.'' , '''61''' : 3 (1947) pp. 530–555</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> L. Fejes Toth, "Lagerungen in der Ebene, auf der Kugel und im Raum" , Springer (1972)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> V.I. Diskant, "A generalization of Bonnesen's inequalities" ''Soviet Math. Dokl.'' , '''14''' : 6 (1973) pp. 1728–1731 ''Dokl. Akad. Nauk SSSR'' , '''213''' : 3 (1973) pp. 519–521</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> V.I. Diskant, "Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference" ''Siberian Math. J.'' , '''13''' : 4 (1973) pp. 529–532 ''Sibirsk. Mat. Zh.'' , '''13''' : 4 (1972) pp. 767–772</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> Yu.A. Volkov, "Stability of the solution to Minkowski's problem" ''Vestnik Leningrad. Univ. Ser. Mat. Astron.'' , '''18''' (1963) pp. 33–43 (In Russian)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D.A. Kryzhanovskii, "Isoperimeters" , Moscow (1959) (In Russian) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Hadwiger, "Vorlesungen über Inhalt, Oberfläche und Isoperimetrie" , Springer (1957) {{MR|0102775}} {{ZBL|0078.35703}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.A. Lyusternik, "Application of the Brunn–Minkowski inequality to extremal problems" ''Uspekhi Mat. Nauk'' , '''2''' (1936) pp. 47–54 (In Russian) {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Reichardt, "Einführung in die Differentialgeometrie" , Springer (1960) {{MR|0116267}} {{ZBL|0091.34001}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Schmidt, "Die Brunn–Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I" ''Math. Nachr.'' , '''1''' (1948) pp. 81–157 {{MR|0028600}} {{ZBL|0030.07602}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> H. Busemann, "The isoperimetric problem for Minkowski area" ''Amer. J. Math.'' , '''71''' (1949) pp. 743–762 {{MR|0031762}} {{ZBL|0038.10301}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E. De Giorgi, "Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insience aventi frontiera orientata di misura finita" ''Atti Acad. Naz. Lincei Mem. Cl. Sci. Fis., Mat. e Natur.'' , '''8''' : 5, 2 (1958) pp. 33–44 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> H. Federer, W.H. Fleming, "Normal and integer currents" ''Ann. of Math. (2)'' , '''72''' (1960) pp. 458–520 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> T. Radó, "The isoperimetric inequality and the Lebesgue definition of surface area" ''Trans. Amer. Math. Soc.'' , '''61''' : 3 (1947) pp. 530–555 {{MR|0021966}} {{ZBL|0035.32601}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> L. Fejes Toth, "Lagerungen in der Ebene, auf der Kugel und im Raum" , Springer (1972) {{MR|}} {{ZBL|0229.52009}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> V.I. Diskant, "A generalization of Bonnesen's inequalities" ''Soviet Math. Dokl.'' , '''14''' : 6 (1973) pp. 1728–1731 ''Dokl. Akad. Nauk SSSR'' , '''213''' : 3 (1973) pp. 519–521 {{MR|338925}} {{ZBL|}} </TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> V.I. Diskant, "Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference" ''Siberian Math. J.'' , '''13''' : 4 (1973) pp. 529–532 ''Sibirsk. Mat. Zh.'' , '''13''' : 4 (1972) pp. 767–772 {{MR|}} {{ZBL|0266.52008}} </TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> Yu.A. Volkov, "Stability of the solution to Minkowski's problem" ''Vestnik Leningrad. Univ. Ser. Mat. Astron.'' , '''18''' (1963) pp. 33–43 (In Russian) {{MR|}} {{ZBL|}} </TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The Minkowski area | + | The Minkowski area $ F ( A , B ) $ |
+ | of a convex set $ A $ | ||
+ | with respect to a convex set $ B $ | ||
+ | is defined as follows. Let $ H _ {B} ( u) $ | ||
+ | be the support function of $ B $, | ||
+ | i.e. for each vector $ u \in \mathbf R ^ {n} $, | ||
+ | $ \sum_{i=1}^ {n} u _ {i} x _ {i} = H _ {B} ( u) $ | ||
+ | defines a supporting plane of $ B $ | ||
+ | such that the open half-space into which $ u $ | ||
+ | points contains no points of $ B $, | ||
+ | so that $ \sum u _ {i} x _ {i} \leq H _ {B} ( u) $ | ||
+ | for all $ x \in B $ (and equality holds for at least one point of $ B $). | ||
+ | The Minkowski area of $ A $ | ||
+ | with respect to $ B $ | ||
+ | is now defined by | ||
− | + | $$ | |
+ | F ( A , B ) = \int\limits _ { S } H _ {B} ( u) d S | ||
+ | $$ | ||
− | where | + | where $ S $ |
+ | is the boundary of $ A $. | ||
+ | It is also equal to $ n $ | ||
+ | times the mixed volume $ V ( A , B \dots B ) $ ($ ( n - 1) $ | ||
+ | $ B $' | ||
+ | s). Here the mixed volume $ V ( A _ {1} \dots A _ {n} ) $ | ||
+ | of $ n $ | ||
+ | convex sets is defined as the coefficient of $ \lambda _ {1} \dots \lambda _ {n} $ | ||
+ | in the polynomial $ V ( \lambda _ {1} A _ {1} + \dots + \lambda _ {n} A _ {n} ) $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Bonnesen, W. Fenchel, "Theorie der konvexen Körper" , Chelsea, reprint (1948) pp. Sects. 15, 29, 31, 38</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Bonnesen, W. Fenchel, "Theorie der konvexen Körper" , Chelsea, reprint (1948) pp. Sects. 15, 29, 31, 38 {{MR|0344997}} {{MR|0372748}} {{MR|1512278}} {{ZBL|0277.52001}} {{ZBL|0906.52001}} {{ZBL|0008.07708}} {{ZBL|60.0673.01}} {{ZBL|51.0373.01}} </TD></TR></table> |
Latest revision as of 08:14, 13 January 2024
The inequality between the volume $ V $
of a domain in a Euclidean space $ \mathbf R ^ {n} $,
$ n \geq 2 $,
and the $ ( n - 1) $-dimensional area $ F $
of the hypersurface bounding the domain:
$$ n ^ {n} v _ {n} V ^ {n - 1 } \leq F ^ { n } , $$
where $ v _ {n} $ is the volume of the unit $ n $-sphere. Equality holds only for a sphere. The classical isoperimetric inequality gives a solution of the isoperimetric problem. For $ n = 2, 3 $ the classical isoperimetric inequality was known in Antiquity. A rigorous proof of the classical isoperimetric inequality for $ n = 2 $ was given by F. Edler in 1882, for $ n = 3 $ by H.A. Schwarz in 1890, and for all $ n \geq 2 $ by L.A. Lyusternik in 1935 and E. Schmidt in 1939 (see [1], [2], [3]).
While in the two-dimensional case there are many proofs of the classical isoperimetric inequality (see [4]), only two approaches are known for $ n > 2 $. The first is the method of symmetrization proposed by J. Steiner. Using this method, Schmidt obtained analogues of the classical isoperimetric inequality (and the Brunn–Minkowski inequalities) for spherical and hyperbolic $ n $-dimensional spaces (see [5]). The second approach consists in reducing the classical isoperimetric inequality to a Brunn–Minkowski inequality (see Brunn–Minkowski theorem) and using the method of proportional division of volumes. In this approach there naturally arises the more general inequality
$$ \tag{* } n ^ {n} V ^ {n - 1 } ( A) V ( B) \leq F ^ { n } ( A, B) $$
for volumes $ V ( A) $, $ V ( B) $ of two sets and the Minkowski area $ F ( A, B) $ of the set $ A $ with respect to $ B $. The inequality (*) can be interpreted as a classical isoperimetric inequality in Minkowski space; equality for a fixed Minkowski "sphere" $ B $ is not, generally speaking, attained for a unique body $ A $; moreover, these bodies are different from a "sphere" (see [6]).
There are a number of generalizations of the classical isoperimetric inequality in which one does not consider domains with a piecewise-smooth boundary, but wider classes of sets, and the area of the boundary is considered in a generalized sense (Minkowski area, Lebesgue area, Caccioppoli–De Giorgi perimeter of a set, or the mass of a current, see [7], [8]). The classical isoperimetric inequality remains valid in all these cases, as well as for hypersurfaces with self-intersections and the corresponding oriented volume (see [9]). These generalizations can be obtained from the classical isoperimetric inequality by limit transition for distinct variants of the concept of convergence.
For the isoperimetric difference $ F ^ { n } - n ^ {n} v _ {n} V ^ {n - 1 } $, and the isoperimetric ratio $ F ^ { n } V ^ {1 - n } $, estimates are known which strengthen the classical isoperimetric inequality (see [2]). Some of these estimates are obtained for sets of special shape, in the first place for convex sets (cf. Convex set) and polyhedra (see [10]). An example of this is the Bonnesen inequality for plane figures:
$$ F ^ { 2 } - 4 \pi V \geq ( F - 4 \pi r) ^ {2} , $$
where $ r $ is the radius of the largest inscribed circle, and its generalization (see [11]) for convex bodies in $ \mathbf R ^ {n} $:
$$ F ^ { n/( n - 1) } ( A, B) - n ^ {n/( n - 1) } V ( A) V ^ {1/( n - 1) } ( B) \geq $$
$$ \geq \ [ F ( A, B) - n ^ {n/( n - 1) } qV ( B) ^ {1/( n - 1) } ] ^ {n} . $$
Here $ q = \max \{ \lambda : {\lambda B \textrm{ can be imbedded in } A } \} $. The relative isoperimetric difference of two convex bodies,
$$ F ^ { n } ( A, B) - n ^ {n} V ^ {n - 1 } ( A) V ( B) , $$
can serve as a measure of their non-homotheticity (see [12]). It is used, for example, in proving stability theorems in the Minkowski problem (see [13]). For generalizations of the classical isoperimetric inequality to spaces of variable curvature and related inequalities, see Isoperimetric inequality.
References
[1] | D.A. Kryzhanovskii, "Isoperimeters" , Moscow (1959) (In Russian) |
[2] | H. Hadwiger, "Vorlesungen über Inhalt, Oberfläche und Isoperimetrie" , Springer (1957) MR0102775 Zbl 0078.35703 |
[3] | L.A. Lyusternik, "Application of the Brunn–Minkowski inequality to extremal problems" Uspekhi Mat. Nauk , 2 (1936) pp. 47–54 (In Russian) |
[4] | H. Reichardt, "Einführung in die Differentialgeometrie" , Springer (1960) MR0116267 Zbl 0091.34001 |
[5] | E. Schmidt, "Die Brunn–Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I" Math. Nachr. , 1 (1948) pp. 81–157 MR0028600 Zbl 0030.07602 |
[6] | H. Busemann, "The isoperimetric problem for Minkowski area" Amer. J. Math. , 71 (1949) pp. 743–762 MR0031762 Zbl 0038.10301 |
[7] | E. De Giorgi, "Sulla proprietà isoperimetrica dell'ipersfera, nella classe degli insience aventi frontiera orientata di misura finita" Atti Acad. Naz. Lincei Mem. Cl. Sci. Fis., Mat. e Natur. , 8 : 5, 2 (1958) pp. 33–44 |
[8] | H. Federer, W.H. Fleming, "Normal and integer currents" Ann. of Math. (2) , 72 (1960) pp. 458–520 |
[9] | T. Radó, "The isoperimetric inequality and the Lebesgue definition of surface area" Trans. Amer. Math. Soc. , 61 : 3 (1947) pp. 530–555 MR0021966 Zbl 0035.32601 |
[10] | L. Fejes Toth, "Lagerungen in der Ebene, auf der Kugel und im Raum" , Springer (1972) Zbl 0229.52009 |
[11] | V.I. Diskant, "A generalization of Bonnesen's inequalities" Soviet Math. Dokl. , 14 : 6 (1973) pp. 1728–1731 Dokl. Akad. Nauk SSSR , 213 : 3 (1973) pp. 519–521 MR338925 |
[12] | V.I. Diskant, "Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference" Siberian Math. J. , 13 : 4 (1973) pp. 529–532 Sibirsk. Mat. Zh. , 13 : 4 (1972) pp. 767–772 Zbl 0266.52008 |
[13] | Yu.A. Volkov, "Stability of the solution to Minkowski's problem" Vestnik Leningrad. Univ. Ser. Mat. Astron. , 18 (1963) pp. 33–43 (In Russian) |
Comments
The Minkowski area $ F ( A , B ) $ of a convex set $ A $ with respect to a convex set $ B $ is defined as follows. Let $ H _ {B} ( u) $ be the support function of $ B $, i.e. for each vector $ u \in \mathbf R ^ {n} $, $ \sum_{i=1}^ {n} u _ {i} x _ {i} = H _ {B} ( u) $ defines a supporting plane of $ B $ such that the open half-space into which $ u $ points contains no points of $ B $, so that $ \sum u _ {i} x _ {i} \leq H _ {B} ( u) $ for all $ x \in B $ (and equality holds for at least one point of $ B $). The Minkowski area of $ A $ with respect to $ B $ is now defined by
$$ F ( A , B ) = \int\limits _ { S } H _ {B} ( u) d S $$
where $ S $ is the boundary of $ A $. It is also equal to $ n $ times the mixed volume $ V ( A , B \dots B ) $ ($ ( n - 1) $ $ B $' s). Here the mixed volume $ V ( A _ {1} \dots A _ {n} ) $ of $ n $ convex sets is defined as the coefficient of $ \lambda _ {1} \dots \lambda _ {n} $ in the polynomial $ V ( \lambda _ {1} A _ {1} + \dots + \lambda _ {n} A _ {n} ) $.
References
[a1] | T. Bonnesen, W. Fenchel, "Theorie der konvexen Körper" , Chelsea, reprint (1948) pp. Sects. 15, 29, 31, 38 MR0344997 MR0372748 MR1512278 Zbl 0277.52001 Zbl 0906.52001 Zbl 0008.07708 Zbl 60.0673.01 Zbl 51.0373.01 |
Isoperimetric inequality, classical. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Isoperimetric_inequality,_classical&oldid=15338