Difference between revisions of "Variation of Hodge structure"
(Importing text file) |
m (fix tex) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | v0961702.png | ||
+ | $#A+1 = 47 n = 2 | ||
+ | $#C+1 = 47 : ~/encyclopedia/old_files/data/V096/V.0906170 Variation of Hodge structure | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A variation of Hodge structure of weight $ w $ | |
+ | on a complex manifold $ {\mathcal S} $ | ||
+ | is a couple $ {\mathcal V} =( {\mathcal V} _ {\mathbf Z } , {\mathcal F} ^ {\bullet } ) $ | ||
+ | where $ {\mathcal V} _ {\mathbf Z } $ | ||
+ | is a locally constant sheaf of finitely-generated Abelian groups on $ {\mathcal S} $, | ||
+ | and $ {\mathcal F} ^ {\bullet } $ | ||
+ | is a finite decreasing filtration of $ V= {\mathcal V} _ {\mathbf Z } \otimes _ {\mathbf Z } {\mathcal O} _ {\mathcal S} $ | ||
+ | by holomorphic subbundles, subject to the following conditions: i) the flat connection $ \nabla $ | ||
+ | on $ V $ | ||
+ | defined by $ \nabla ( v\otimes f )= v\otimes df $, | ||
+ | for $ v $, | ||
+ | $ f $ | ||
+ | local sections of $ {\mathcal V} _ {\mathbf Z } $ | ||
+ | and $ {\mathcal O} _ {\mathcal S} $, | ||
+ | respectively, satisfies $ \nabla ( {\mathcal F} ^ {p} )\subset {\mathcal F} ^ {p- 1 } \otimes \Omega _ {\mathcal S} ^ {1} $( | ||
+ | Griffiths' transversality); ii) for each $ s \in {\mathcal S} $, | ||
+ | the pair $ ( {\mathcal V} _ {\mathbf Z ,s } , {\mathcal F} ^ {\bullet } ( s)) $ | ||
+ | is a Hodge structure of weight $ w $. | ||
+ | |||
+ | A polarization of a variation of Hodge structure $ ( {\mathcal V} _ {\mathbf Z } , {\mathcal F} ^ {\bullet } ) $ | ||
+ | is a flat bilinear form $ {\mathcal V} _ {\mathbf Z } \otimes {\mathcal V} _ {\mathbf Z } \rightarrow \mathbf Z _ {\mathcal S} $ | ||
+ | which induces a polarization of the Hodge structure $ {\mathcal V} _ {\mathbf Z ,s } $ | ||
+ | for each $ s \in {\mathcal S} $. | ||
+ | Similar notions exist for $ \mathbf Z $ | ||
+ | replaced by $ \mathbf Q $ | ||
+ | or $ \mathbf R $, | ||
+ | [[#References|[a2]]]. If $ f: X \rightarrow S $ | ||
+ | is a proper smooth morphism of algebraic varieties over $ \mathbf C $, | ||
+ | then $ R ^ {m} f _ {*} \mathbf Z _ {X} $ | ||
+ | is the underlying local system of a polarizable variation of Hodge structure on $ {\mathcal S} $. | ||
+ | By a result of A. Borel, for a polarized variation of Hodge structure on a complex manifold $ S $ | ||
+ | of the form $ \overline{S}\; \setminus D $, | ||
+ | where $ \overline{S}\; $ | ||
+ | is compact and $ D\subset \overline{S}\; $ | ||
+ | is a divisor with normal crossings, the monodromy around each local component of $ D $ | ||
+ | is quasi-unipotent [[#References|[a3]]] (monodromy theorem). A polarized variation of Hodge structure over $ S $ | ||
+ | gives rise to a holomorphic period mapping from $ S $ | ||
+ | to a classifying space of Hodge structures (see [[Period mapping|Period mapping]]). | ||
+ | |||
+ | If $ {\mathcal S} = \overline{S}\; \setminus D $ | ||
+ | with $ \overline{S}\; $ | ||
+ | a compact Kähler manifold and $ D $ | ||
+ | a divisor with normal crossings on $ \overline{S}\; $, | ||
+ | then for a polarized variation of Hodge structure $ ( {\mathcal V} _ {\mathbf Z } , {\mathcal F} ^ {\bullet } ) $ | ||
+ | on $ S $, | ||
+ | the sheaf $ {\mathcal V} _ {\mathbf Z } $ | ||
+ | has a minimal extension to a perverse sheaf $ IC( {\mathcal V} _ {\mathbf Z } ) $ | ||
+ | on $ \overline{S}\; $ | ||
+ | and $ IH ^ {*} ( \overline{S}\; , IC( {\mathcal V} _ {\mathbf Z } )) $ | ||
+ | carries a pure Hodge structure [[#References|[a4]]]–[[#References|[a6]]]. In fact, $ IC( {\mathcal V} _ {\mathbf Z } ) $ | ||
+ | is part of a polarized Hodge module [[#References|[a7]]]. Generalizations are the notions of variation of mixed Hodge structure [[#References|[a8]]], [[#References|[a9]]] and mixed Hodge module [[#References|[a10]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1a]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1a]</TD> <TD valign="top"> P. Griffiths, "Periods of integrals on algebraic manifolds I" ''Amer. J. Math.'' , '''90''' (1968) pp. 568–626 {{MR|0229641}} {{ZBL|0169.52303}} </TD></TR><TR><TD valign="top">[a1b]</TD> <TD valign="top"> P. Griffiths, "Periods of integrals on algebraic manifolds II" ''Amer. J. Math.'' , '''90''' (1968) pp. 808–865 {{MR|0233825}} {{ZBL|0183.25501}} </TD></TR><TR><TD valign="top">[a1c]</TD> <TD valign="top"> P. Griffiths, "Periods of integrals on algebraic manifolds III" ''Publ. Math. IHES'' , '''38''' (1970) pp. 228–296 {{MR|0282990}} {{ZBL|0212.53503}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P. Deligne, "Travaux de Griffiths" , ''Sem. Bourbaki Exp. 376'' , ''Lect. notes in math.'' , '''180''' , Springer (1970) pp. 213–235 {{MR|}} {{ZBL|0208.48601}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" ''Invent. Math.'' , '''22''' (1973) pp. 211–319 {{MR|0382272}} {{ZBL|0278.14003}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Cattani, A. Kaplan, W. Schmid, "$L^2$ and intersection cohomologies for a polarizable variation of Hodge structure" ''Invent. Math.'' , '''87''' (1987) pp. 217–252 {{MR|870728}} {{ZBL|0611.14006}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Kashiwara, T. Kawai, "The Poincaré lemma for variations of polarized Hodge structures" ''Publ. R.I.M.S. Kyoto Univ.'' , '''23''' (1987) pp. 345–407 {{MR|0890924}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S. Zucker, "Hodge theory with degenerating coefficients: $L_2$-cohomology in the Poincaré metric" ''Ann. of Math.'' , '''109''' (1979) pp. 415–476 {{MR|534758}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> M. Saito, "Modules de Hodge polarisables" ''Publ. R.I.M.S. Kyoto Univ.'' , '''24''' (1988) pp. 849–995 {{MR|1000123}} {{ZBL|0691.14007}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> J. Steenbrink, S. Zucker, "Variation of mixed Hodge structure, I" ''Invent. Math.'' , '''80''' (1985) pp. 489–542 {{MR|0791673}} {{MR|0791674}} {{ZBL|0626.14007}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> M. Kashiwara, "A study of a variation of mixed Hodge structure" ''Publ. R.I.M.S. Kyoto Univ.'' , '''22''' (1986) pp. 991–1024 {{MR|866665}} {{ZBL|0621.14007}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> M. Saito, "Mixed Hodge modules" ''Publ. R.I.M.S. Kyoto Univ.'' , '''26''' (1990) pp. 221–333 {{MR|1047741}} {{MR|1047415}} {{ZBL|0727.14004}} {{ZBL|0726.14007}} </TD></TR></table> |
Latest revision as of 18:39, 2 January 2021
A variation of Hodge structure of weight $ w $
on a complex manifold $ {\mathcal S} $
is a couple $ {\mathcal V} =( {\mathcal V} _ {\mathbf Z } , {\mathcal F} ^ {\bullet } ) $
where $ {\mathcal V} _ {\mathbf Z } $
is a locally constant sheaf of finitely-generated Abelian groups on $ {\mathcal S} $,
and $ {\mathcal F} ^ {\bullet } $
is a finite decreasing filtration of $ V= {\mathcal V} _ {\mathbf Z } \otimes _ {\mathbf Z } {\mathcal O} _ {\mathcal S} $
by holomorphic subbundles, subject to the following conditions: i) the flat connection $ \nabla $
on $ V $
defined by $ \nabla ( v\otimes f )= v\otimes df $,
for $ v $,
$ f $
local sections of $ {\mathcal V} _ {\mathbf Z } $
and $ {\mathcal O} _ {\mathcal S} $,
respectively, satisfies $ \nabla ( {\mathcal F} ^ {p} )\subset {\mathcal F} ^ {p- 1 } \otimes \Omega _ {\mathcal S} ^ {1} $(
Griffiths' transversality); ii) for each $ s \in {\mathcal S} $,
the pair $ ( {\mathcal V} _ {\mathbf Z ,s } , {\mathcal F} ^ {\bullet } ( s)) $
is a Hodge structure of weight $ w $.
A polarization of a variation of Hodge structure $ ( {\mathcal V} _ {\mathbf Z } , {\mathcal F} ^ {\bullet } ) $ is a flat bilinear form $ {\mathcal V} _ {\mathbf Z } \otimes {\mathcal V} _ {\mathbf Z } \rightarrow \mathbf Z _ {\mathcal S} $ which induces a polarization of the Hodge structure $ {\mathcal V} _ {\mathbf Z ,s } $ for each $ s \in {\mathcal S} $. Similar notions exist for $ \mathbf Z $ replaced by $ \mathbf Q $ or $ \mathbf R $, [a2]. If $ f: X \rightarrow S $ is a proper smooth morphism of algebraic varieties over $ \mathbf C $, then $ R ^ {m} f _ {*} \mathbf Z _ {X} $ is the underlying local system of a polarizable variation of Hodge structure on $ {\mathcal S} $. By a result of A. Borel, for a polarized variation of Hodge structure on a complex manifold $ S $ of the form $ \overline{S}\; \setminus D $, where $ \overline{S}\; $ is compact and $ D\subset \overline{S}\; $ is a divisor with normal crossings, the monodromy around each local component of $ D $ is quasi-unipotent [a3] (monodromy theorem). A polarized variation of Hodge structure over $ S $ gives rise to a holomorphic period mapping from $ S $ to a classifying space of Hodge structures (see Period mapping).
If $ {\mathcal S} = \overline{S}\; \setminus D $ with $ \overline{S}\; $ a compact Kähler manifold and $ D $ a divisor with normal crossings on $ \overline{S}\; $, then for a polarized variation of Hodge structure $ ( {\mathcal V} _ {\mathbf Z } , {\mathcal F} ^ {\bullet } ) $ on $ S $, the sheaf $ {\mathcal V} _ {\mathbf Z } $ has a minimal extension to a perverse sheaf $ IC( {\mathcal V} _ {\mathbf Z } ) $ on $ \overline{S}\; $ and $ IH ^ {*} ( \overline{S}\; , IC( {\mathcal V} _ {\mathbf Z } )) $ carries a pure Hodge structure [a4]–[a6]. In fact, $ IC( {\mathcal V} _ {\mathbf Z } ) $ is part of a polarized Hodge module [a7]. Generalizations are the notions of variation of mixed Hodge structure [a8], [a9] and mixed Hodge module [a10].
References
[a1a] | P. Griffiths, "Periods of integrals on algebraic manifolds I" Amer. J. Math. , 90 (1968) pp. 568–626 MR0229641 Zbl 0169.52303 |
[a1b] | P. Griffiths, "Periods of integrals on algebraic manifolds II" Amer. J. Math. , 90 (1968) pp. 808–865 MR0233825 Zbl 0183.25501 |
[a1c] | P. Griffiths, "Periods of integrals on algebraic manifolds III" Publ. Math. IHES , 38 (1970) pp. 228–296 MR0282990 Zbl 0212.53503 |
[a2] | P. Deligne, "Travaux de Griffiths" , Sem. Bourbaki Exp. 376 , Lect. notes in math. , 180 , Springer (1970) pp. 213–235 Zbl 0208.48601 |
[a3] | W. Schmid, "Variation of Hodge structure: the singularities of the period mapping" Invent. Math. , 22 (1973) pp. 211–319 MR0382272 Zbl 0278.14003 |
[a4] | E. Cattani, A. Kaplan, W. Schmid, "$L^2$ and intersection cohomologies for a polarizable variation of Hodge structure" Invent. Math. , 87 (1987) pp. 217–252 MR870728 Zbl 0611.14006 |
[a5] | M. Kashiwara, T. Kawai, "The Poincaré lemma for variations of polarized Hodge structures" Publ. R.I.M.S. Kyoto Univ. , 23 (1987) pp. 345–407 MR0890924 |
[a6] | S. Zucker, "Hodge theory with degenerating coefficients: $L_2$-cohomology in the Poincaré metric" Ann. of Math. , 109 (1979) pp. 415–476 MR534758 |
[a7] | M. Saito, "Modules de Hodge polarisables" Publ. R.I.M.S. Kyoto Univ. , 24 (1988) pp. 849–995 MR1000123 Zbl 0691.14007 |
[a8] | J. Steenbrink, S. Zucker, "Variation of mixed Hodge structure, I" Invent. Math. , 80 (1985) pp. 489–542 MR0791673 MR0791674 Zbl 0626.14007 |
[a9] | M. Kashiwara, "A study of a variation of mixed Hodge structure" Publ. R.I.M.S. Kyoto Univ. , 22 (1986) pp. 991–1024 MR866665 Zbl 0621.14007 |
[a10] | M. Saito, "Mixed Hodge modules" Publ. R.I.M.S. Kyoto Univ. , 26 (1990) pp. 221–333 MR1047741 MR1047415 Zbl 0727.14004 Zbl 0726.14007 |
Variation of Hodge structure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Variation_of_Hodge_structure&oldid=15012