|
|
(2 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | The best-studied case of the general concept of the action of a group on a space. A topological group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105501.png" /> acts on a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105502.png" /> if to each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105503.png" /> there corresponds a homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105504.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105505.png" /> (onto itself) satisfying the following conditions: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105506.png" />; 2) for the unit element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105507.png" /> the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105508.png" /> is the identity homeomorphism; and 3) the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a0105509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055010.png" /> is continuous. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055012.png" /> have supplementary structures, the actions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055013.png" /> which are compatible with such structures are of special interest; thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055014.png" /> is a differentiable manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055015.png" /> is a Lie group, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055016.png" /> is usually assumed to be differentiable.
| + | <!-- |
| + | a0105501.png |
| + | $#A+1 = 76 n = 1 |
| + | $#C+1 = 76 : ~/encyclopedia/old_files/data/A010/A.0100550 Action of a group on a manifold |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055017.png" /> is called the orbit (trajectory) of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055018.png" /> with respect to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055019.png" />; the orbit space is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055020.png" />, and is also called the quotient space of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055021.png" /> with respect to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055022.png" />. An important example is the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055023.png" /> is a Lie group and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055024.png" /> is a subgroup; then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055025.png" /> is the corresponding [[Homogeneous space|homogeneous space]]. Classical examples include the spheres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055026.png" />, the Grassmann manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055027.png" />, and the Stiefel manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055028.png" /> (cf. [[Grassmann manifold|Grassmann manifold]]; [[Stiefel manifold|Stiefel manifold]]). Here, the orbit space is a manifold. This is usually not the case if the action of the group is not free, e.g. if the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055029.png" /> of fixed points is non-empty. A free action of a group is an action for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055030.png" /> follows if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055031.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055032.png" />. On the contrary, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055033.png" /> is a manifold if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055034.png" /> is a differentiable manifold and the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055035.png" /> is differentiable; this statement is valid for cohomology manifolds over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055036.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055037.png" /> as well (Smith's theorem).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055038.png" /> is a non-compact group, the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055039.png" /> is usually inseparable, and this is why a study of individual trajectories and their mutual locations is of interest. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055040.png" /> of real numbers acting on a differentiable manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055041.png" /> in a differentiable manner is a classical example. The study of such dynamical systems, which in terms of local coordinates is equivalent to the study of systems of ordinary differential equations, usually involves analytical methods.
| + | The best-studied case of the general concept of the action of a group on a space. A topological group $ G $ |
| + | acts on a space $ X $ |
| + | if to each $ g \in G $ |
| + | there corresponds a homeomorphism $ \phi _ {g} $ |
| + | of $ X $( |
| + | onto itself) satisfying the following conditions: 1) $ \phi _ {g} \cdot \phi _ {h} = \phi _ {gh} $; |
| + | 2) for the unit element $ e \in G $ |
| + | the mapping $ \phi _ {e} $ |
| + | is the identity homeomorphism; and 3) the mapping $ \phi : G \times X \rightarrow X $, |
| + | $ \phi (g, x) = \phi _ {g} (x) $ |
| + | is continuous. If $ X $ |
| + | and $ G $ |
| + | have supplementary structures, the actions of $ G $ |
| + | which are compatible with such structures are of special interest; thus, if $ X $ |
| + | is a differentiable manifold and $ G $ |
| + | is a Lie group, the mapping $ \phi $ |
| + | is usually assumed to be differentiable. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055042.png" /> is a compact group, it is known that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055043.png" /> is a manifold and if each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055045.png" />, acts non-trivially on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055046.png" /> (i.e. not according to the law <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055047.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055048.png" /> is a Lie group [[#References|[8]]]. Accordingly, the main interest in the action of a compact group is the action of a Lie group.
| + | The set $ \{ \phi _ {g} ( x _ {0} ) \} _ {g \in G } $ |
| + | is called the orbit (trajectory) of the point $ x _ {0} \in X $ |
| + | with respect to the group $ G $; |
| + | the orbit space is denoted by $ X/G $, |
| + | and is also called the quotient space of the space $ X $ |
| + | with respect to the group $ G $. |
| + | An important example is the case when $ X $ |
| + | is a Lie group and $ G $ |
| + | is a subgroup; then $ X/G $ |
| + | is the corresponding [[Homogeneous space|homogeneous space]]. Classical examples include the spheres $ S ^ {n-1} = \textrm{ O } (n) / \textrm{ O } (n-1) $, |
| + | the Grassmann manifolds $ \textrm{ O } (n) / ( \textrm{ O } (m) \times \textrm{ O } (n-m) ) $, |
| + | and the Stiefel manifolds $ \textrm{ O } (n) / \textrm{ O } (m) $( |
| + | cf. [[Grassmann manifold|Grassmann manifold]]; [[Stiefel manifold|Stiefel manifold]]). Here, the orbit space is a manifold. This is usually not the case if the action of the group is not free, e.g. if the set $ X ^ {G} $ |
| + | of fixed points is non-empty. A free action of a group is an action for which $ g=e $ |
| + | follows if $ gx=x $ |
| + | for any $ x \in X $. |
| + | On the contrary, $ X ^ {G} $ |
| + | is a manifold if $ X $ |
| + | is a differentiable manifold and the action of $ G $ |
| + | is differentiable; this statement is valid for cohomology manifolds over $ \mathbf Z _ {p} $ |
| + | for $ G = \mathbf Z _ {p} $ |
| + | as well (Smith's theorem). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055049.png" /> be a compact Lie group and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055050.png" /> be a compact cohomology manifold. The following results are typical. A finite number of orbit types exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055051.png" />, and the neighbourhoods of an orbit look like a direct product (the slice theorem); the relations between the cohomology structures of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055052.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055054.png" /> are of interest.
| + | If $ G $ |
| + | is a non-compact group, the space $ X/G $ |
| + | is usually inseparable, and this is why a study of individual trajectories and their mutual locations is of interest. The group $ G = \mathbf R $ |
| + | of real numbers acting on a differentiable manifold $ X $ |
| + | in a differentiable manner is a classical example. The study of such dynamical systems, which in terms of local coordinates is equivalent to the study of systems of ordinary differential equations, usually involves analytical methods. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055055.png" /> is a compact Lie group, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055056.png" /> a differentiable manifold and if the action | + | If $ G $ |
| + | is a compact group, it is known that if $ X $ |
| + | is a manifold and if each $ g \in G $, |
| + | $ g \neq e $, |
| + | acts non-trivially on $ X $( |
| + | i.e. not according to the law $ (g, x) \rightarrow x $), |
| + | then $ G $ |
| + | is a Lie group [[#References|[8]]]. Accordingly, the main interest in the action of a compact group is the action of a Lie group. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055057.png" /></td> </tr></table>
| + | Let $ G $ |
| + | be a compact Lie group and let $ X $ |
| + | be a compact cohomology manifold. The following results are typical. A finite number of orbit types exists in $ X $, |
| + | and the neighbourhoods of an orbit look like a direct product (the slice theorem); the relations between the cohomology structures of the spaces $ X $, |
| + | $ X/G $ |
| + | and $ X ^ {G} $ |
| + | are of interest. |
| | | |
− | is differentiable, then one naturally obtains the following equivalence relation: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055058.png" /> if and only if it is possible to find an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055059.png" /> such that the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055060.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055061.png" /> and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055063.png" />. If the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055064.png" /> acts freely, the equivalence classes can be found from the one-to-one correspondence with the bordisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055065.png" /> of the classifying space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055066.png" /> (cf. [[Bordism|Bordism]]). | + | If $ G $ |
| + | is a compact Lie group, $ X $ |
| + | a differentiable manifold and if the action |
| | | |
− | Recent results (mid-1970s) mostly concern: 1) the determination of types of orbits with various supplementary assumptions concerning the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055067.png" /> and the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055068.png" /> ([[#References|[6]]]); 2) the classification of group actions; and 3) finding connections between global invariants of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055069.png" /> and local properties of the group actions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055070.png" /> in a neighbourhood of fixed points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055071.png" />. In solving these problems an important part is played by: methods of modern differential topology (e.g. surgery methods); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055072.png" />-theory [[#References|[1]]], which is the analogue of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055073.png" />-theory for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055074.png" />-vector bundles; bordism and cobordism theories [[#References|[3]]]; and analytical methods of studying the action of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055075.png" /> based on the study of pseudo-differential operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055076.png" />-bundles [[#References|[2]]], [[#References|[7]]].
| + | $$ |
| + | \phi : G \times X \rightarrow X |
| + | $$ |
| | | |
− | ====References====
| + | is differentiable, then one naturally obtains the following equivalence relation: $ (X, \phi ) \sim ( X ^ { \prime } , \phi ^ \prime ) $ |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.F. Atiyah, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010550/a01055077.png" />-theory: lectures" , Benjamin (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 484–530</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Bukhshtaber, A.S. Mishchenko, S.P. Novikov, "Formal groups and their role in the apparatus of algebraic topology" ''Russian Math. Surveys'' , '''26''' (1971) pp. 63–90 ''Uspekhi Mat. Nauk'' , '''26''' : 2 (1971) pp. 131–154</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G. Bredon, "Introduction to compact transformation groups" , Acad. Press (1972)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> W.Y. Hsiang, "Cohomology theory of topological transformation groups" , Springer (1975)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> D.B. Zagier, "Equivariant Pontryagin classes and applications to orbit spaces" , Springer (1972)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> , ''Proc. conf. transformation groups'' , Springer (1968)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> , ''Proc. 2-nd conf. compact transformation groups'' , Springer (1972)</TD></TR></table>
| + | if and only if it is possible to find an $ ( X ^ { \prime\prime } , \phi ^ {\prime\prime} ) $ |
− | | + | such that the boundary $ \partial X ^ { \prime\prime } $ |
− | | + | has the form $ \partial X ^ { \prime\prime } = X \cup X ^ { \prime } $ |
− | | + | and such that $ \phi ^ {\prime\prime} \mid _ {X} = \phi $, |
− | ====Comments====
| + | $ \phi ^ {\prime\prime} \mid _ {X ^ { \prime } } = \phi ^ \prime $. |
| + | If the group $ G $ |
| + | acts freely, the equivalence classes can be found from the one-to-one correspondence with the bordisms $ \Omega _ {*} ( B _ {G} ) $ |
| + | of the classifying space $ B _ {G} $( |
| + | cf. [[Bordism|Bordism]]). |
| | | |
| + | Recent results (mid-1970s) mostly concern: 1) the determination of types of orbits with various supplementary assumptions concerning the group $ G $ |
| + | and the manifold $ X $([[#References|[6]]]); 2) the classification of group actions; and 3) finding connections between global invariants of the manifold $ X $ |
| + | and local properties of the group actions of $ G $ |
| + | in a neighbourhood of fixed points of $ X ^ {G} $. |
| + | In solving these problems an important part is played by: methods of modern differential topology (e.g. surgery methods); $ K _ {G} $- |
| + | theory [[#References|[1]]], which is the analogue of $ K $- |
| + | theory for $ G $- |
| + | vector bundles; bordism and cobordism theories [[#References|[3]]]; and analytical methods of studying the action of the group $ G $ |
| + | based on the study of pseudo-differential operators in $ G $- |
| + | bundles [[#References|[2]]], [[#References|[7]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Petrie, J.D. Randall, "Transformation groups on manifolds" , M. Dekker (1984)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> M.F. Atiyah, "$K$-theory: lectures" , Benjamin (1967)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> M.F. Atiyah, I.M. Singer, "The index of elliptic operators" ''Ann. of Math. (2)'' , '''87''' (1968) pp. 484–530</TD></TR> |
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Bukhshtaber, A.S. Mishchenko, S.P. Novikov, "Formal groups and their role in the apparatus of algebraic topology" ''Russian Math. Surveys'' , '''26''' (1971) pp. 63–90 ''Uspekhi Mat. Nauk'' , '''26''' : 2 (1971) pp. 131–154</TD></TR> |
| + | <TR><TD valign="top">[4]</TD> <TD valign="top"> P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964)</TD></TR> |
| + | <TR><TD valign="top">[5]</TD> <TD valign="top"> G. Bredon, "Introduction to compact transformation groups" , Acad. Press (1972)</TD></TR> |
| + | <TR><TD valign="top">[6]</TD> <TD valign="top"> W.Y. Hsiang, "Cohomology theory of topological transformation groups" , Springer (1975)</TD></TR> |
| + | <TR><TD valign="top">[7]</TD> <TD valign="top"> D.B. Zagier, "Equivariant Pontryagin classes and applications to orbit spaces" , Springer (1972)</TD></TR> |
| + | <TR><TD valign="top">[8]</TD> <TD valign="top"> , ''Proc. conf. transformation groups'' , Springer (1968)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> , ''Proc. 2-nd conf. compact transformation groups'' , Springer (1972)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T. Petrie, J.D. Randall, "Transformation groups on manifolds" , M. Dekker (1984)</TD></TR></table> |
The best-studied case of the general concept of the action of a group on a space. A topological group $ G $
acts on a space $ X $
if to each $ g \in G $
there corresponds a homeomorphism $ \phi _ {g} $
of $ X $(
onto itself) satisfying the following conditions: 1) $ \phi _ {g} \cdot \phi _ {h} = \phi _ {gh} $;
2) for the unit element $ e \in G $
the mapping $ \phi _ {e} $
is the identity homeomorphism; and 3) the mapping $ \phi : G \times X \rightarrow X $,
$ \phi (g, x) = \phi _ {g} (x) $
is continuous. If $ X $
and $ G $
have supplementary structures, the actions of $ G $
which are compatible with such structures are of special interest; thus, if $ X $
is a differentiable manifold and $ G $
is a Lie group, the mapping $ \phi $
is usually assumed to be differentiable.
The set $ \{ \phi _ {g} ( x _ {0} ) \} _ {g \in G } $
is called the orbit (trajectory) of the point $ x _ {0} \in X $
with respect to the group $ G $;
the orbit space is denoted by $ X/G $,
and is also called the quotient space of the space $ X $
with respect to the group $ G $.
An important example is the case when $ X $
is a Lie group and $ G $
is a subgroup; then $ X/G $
is the corresponding homogeneous space. Classical examples include the spheres $ S ^ {n-1} = \textrm{ O } (n) / \textrm{ O } (n-1) $,
the Grassmann manifolds $ \textrm{ O } (n) / ( \textrm{ O } (m) \times \textrm{ O } (n-m) ) $,
and the Stiefel manifolds $ \textrm{ O } (n) / \textrm{ O } (m) $(
cf. Grassmann manifold; Stiefel manifold). Here, the orbit space is a manifold. This is usually not the case if the action of the group is not free, e.g. if the set $ X ^ {G} $
of fixed points is non-empty. A free action of a group is an action for which $ g=e $
follows if $ gx=x $
for any $ x \in X $.
On the contrary, $ X ^ {G} $
is a manifold if $ X $
is a differentiable manifold and the action of $ G $
is differentiable; this statement is valid for cohomology manifolds over $ \mathbf Z _ {p} $
for $ G = \mathbf Z _ {p} $
as well (Smith's theorem).
If $ G $
is a non-compact group, the space $ X/G $
is usually inseparable, and this is why a study of individual trajectories and their mutual locations is of interest. The group $ G = \mathbf R $
of real numbers acting on a differentiable manifold $ X $
in a differentiable manner is a classical example. The study of such dynamical systems, which in terms of local coordinates is equivalent to the study of systems of ordinary differential equations, usually involves analytical methods.
If $ G $
is a compact group, it is known that if $ X $
is a manifold and if each $ g \in G $,
$ g \neq e $,
acts non-trivially on $ X $(
i.e. not according to the law $ (g, x) \rightarrow x $),
then $ G $
is a Lie group [8]. Accordingly, the main interest in the action of a compact group is the action of a Lie group.
Let $ G $
be a compact Lie group and let $ X $
be a compact cohomology manifold. The following results are typical. A finite number of orbit types exists in $ X $,
and the neighbourhoods of an orbit look like a direct product (the slice theorem); the relations between the cohomology structures of the spaces $ X $,
$ X/G $
and $ X ^ {G} $
are of interest.
If $ G $
is a compact Lie group, $ X $
a differentiable manifold and if the action
$$
\phi : G \times X \rightarrow X
$$
is differentiable, then one naturally obtains the following equivalence relation: $ (X, \phi ) \sim ( X ^ { \prime } , \phi ^ \prime ) $
if and only if it is possible to find an $ ( X ^ { \prime\prime } , \phi ^ {\prime\prime} ) $
such that the boundary $ \partial X ^ { \prime\prime } $
has the form $ \partial X ^ { \prime\prime } = X \cup X ^ { \prime } $
and such that $ \phi ^ {\prime\prime} \mid _ {X} = \phi $,
$ \phi ^ {\prime\prime} \mid _ {X ^ { \prime } } = \phi ^ \prime $.
If the group $ G $
acts freely, the equivalence classes can be found from the one-to-one correspondence with the bordisms $ \Omega _ {*} ( B _ {G} ) $
of the classifying space $ B _ {G} $(
cf. Bordism).
Recent results (mid-1970s) mostly concern: 1) the determination of types of orbits with various supplementary assumptions concerning the group $ G $
and the manifold $ X $([6]); 2) the classification of group actions; and 3) finding connections between global invariants of the manifold $ X $
and local properties of the group actions of $ G $
in a neighbourhood of fixed points of $ X ^ {G} $.
In solving these problems an important part is played by: methods of modern differential topology (e.g. surgery methods); $ K _ {G} $-
theory [1], which is the analogue of $ K $-
theory for $ G $-
vector bundles; bordism and cobordism theories [3]; and analytical methods of studying the action of the group $ G $
based on the study of pseudo-differential operators in $ G $-
bundles [2], [7].
References
[1] | M.F. Atiyah, "$K$-theory: lectures" , Benjamin (1967) |
[2] | M.F. Atiyah, I.M. Singer, "The index of elliptic operators" Ann. of Math. (2) , 87 (1968) pp. 484–530 |
[3] | V.M. Bukhshtaber, A.S. Mishchenko, S.P. Novikov, "Formal groups and their role in the apparatus of algebraic topology" Russian Math. Surveys , 26 (1971) pp. 63–90 Uspekhi Mat. Nauk , 26 : 2 (1971) pp. 131–154 |
[4] | P.E. Conner, E.E. Floyd, "Differentiable periodic maps" , Springer (1964) |
[5] | G. Bredon, "Introduction to compact transformation groups" , Acad. Press (1972) |
[6] | W.Y. Hsiang, "Cohomology theory of topological transformation groups" , Springer (1975) |
[7] | D.B. Zagier, "Equivariant Pontryagin classes and applications to orbit spaces" , Springer (1972) |
[8] | , Proc. conf. transformation groups , Springer (1968) |
[9] | , Proc. 2-nd conf. compact transformation groups , Springer (1972) |
[a1] | T. Petrie, J.D. Randall, "Transformation groups on manifolds" , M. Dekker (1984) |