|
|
| (One intermediate revision by one other user not shown) |
| Line 1: |
Line 1: |
| − | ''of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735002.png" />''
| + | <!-- |
| | + | p0735002.png |
| | + | $#A+1 = 37 n = 0 |
| | + | $#C+1 = 37 : ~/encyclopedia/old_files/data/P073/P.0703500 Poly\AAhanalytic function |
| | + | Automatically converted into TeX, above some diagnostics. |
| | + | Please remove this comment and the {{TEX|auto}} line below, |
| | + | if TeX found to be correct. |
| | + | --> |
| | | | |
| − | A complex function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735003.png" /> of the real variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735004.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735005.png" />, or, which is equivalent, of the complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735006.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735007.png" />, in a plane domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735008.png" /> which can be represented as
| + | {{TEX|auto}} |
| | + | {{TEX|done}} |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735009.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | ''of order $ m $'' |
| | | | |
| − | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350011.png" />, are complex-analytic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350012.png" />. In other words, a poly-analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350013.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350014.png" /> can be defined as a function which in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350015.png" /> has continuous partial derivatives with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350017.png" />, or with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350019.png" />, up to order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350020.png" /> inclusive and which everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350021.png" /> satisfies the generalized Cauchy–Riemann condition:
| + | A complex function $ w = u + iv $ |
| | + | of the real variables $ x $ |
| | + | and $ y $, |
| | + | or, which is equivalent, of the complex variables $ z = x + iy $ |
| | + | and $ \overline{z}\; = x - iy $, |
| | + | in a plane domain $ D $ |
| | + | which can be represented as |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350022.png" /></td> </tr></table>
| + | $$ \tag{1 } |
| | + | w = f( z, \overline{z}\; ) = \sum_{k=0}^ { m-1} {\overline{z}\; } {} ^ {k} f _ {k} ( z), |
| | + | $$ |
| | | | |
| − | For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350023.png" /> one obtains analytic functions (cf. [[Analytic function|Analytic function]]).
| + | where $ f _ {k} ( z) $, |
| | + | $ k = 0 \dots m- 1 $, |
| | + | are complex-analytic functions in $ D $. |
| | + | In other words, a poly-analytic function $ w $ |
| | + | of order $ m $ |
| | + | can be defined as a function which in $ D $ |
| | + | has continuous partial derivatives with respect to $ x $ |
| | + | and $ y $, |
| | + | or with respect to $ z $ |
| | + | and $ \overline{z}\; $, |
| | + | up to order $ m $ |
| | + | inclusive and which everywhere in $ D $ |
| | + | satisfies the generalized Cauchy–Riemann condition: |
| | | | |
| − | For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350024.png" /> to be the real (or imaginary) part of some poly-analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350025.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350026.png" />, it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350027.png" /> be a [[Poly-harmonic function|poly-harmonic function]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350028.png" />. One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [[#References|[1]]]).
| + | $$ |
| | | | |
| − | A poly-analytic function of multi-order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350029.png" /> in the complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350031.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350032.png" /> of the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350034.png" />, is a function of the form
| + | \frac{\partial ^ {m} w }{\partial {\overline{z}\; } {} ^ {m} } |
| | + | = 0 . |
| | + | $$ |
| | | | |
| − | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350035.png" /></td> </tr></table>
| + | For $ m = 1 $ |
| | + | one obtains analytic functions (cf. [[Analytic function]]). |
| | | | |
| − | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350036.png" /> are analytic functions of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350037.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350038.png" />.
| + | For a function $ u = u( x, y) $ |
| | + | to be the real (or imaginary) part of some poly-analytic function $ w = u + iv $ |
| | + | in a domain $ D $, |
| | + | it is necessary and sufficient that $ u $ |
| | + | be a [[Poly-harmonic function|poly-harmonic function]] in $ D $. |
| | + | One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [[#References|[1]]]). |
| | + | |
| | + | A poly-analytic function of multi-order $ m = ( m _ {1} \dots m _ {n} ) $ |
| | + | in the complex variables $ z _ {1} \dots z _ {n} $ |
| | + | and $ \overline{z}\; _ {1} \dots \overline{z}\; _ {n} $ |
| | + | in a domain $ D $ |
| | + | of the complex space $ \mathbf C ^ {n} $, |
| | + | $ n \geq 1 $, |
| | + | is a function of the form |
| | + | |
| | + | $$ |
| | + | w = \sum _ {k _ {1} \dots k _ {n} = 0 } ^ { {m } _ {1} - 1 \dots m _ {n} - 1 } \overline{z}\; {} _ {1} ^ {k _ {1} } \dots \overline{z}\; {} _ {n} ^ {k _ {n} } f _ {k _ {1} \dots k _ {n} } ( z _ {1} \dots z _ {n} ), |
| | + | $$ |
| | + | |
| | + | where $ f _ {k _ {1} \dots k _ {n} } $ |
| | + | are analytic functions of the variables $ z _ {1} \dots z _ {n} $ |
| | + | in $ D $. |
| | | | |
| | ====References==== | | ====References==== |
| | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.B. Balk, M.F. Zuev, "On polyanalytic functions" ''Russian Math. Surveys'' , '''25''' : 5 (1970) pp. 201–223 ''Uspekhi Mat. Nauk'' , '''25''' : 5 (1970) pp. 203–226</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.B. Balk, M.F. Zuev, "On polyanalytic functions" ''Russian Math. Surveys'' , '''25''' : 5 (1970) pp. 201–223 ''Uspekhi Mat. Nauk'' , '''25''' : 5 (1970) pp. 203–226</TD></TR></table> |
of order $ m $
A complex function $ w = u + iv $
of the real variables $ x $
and $ y $,
or, which is equivalent, of the complex variables $ z = x + iy $
and $ \overline{z}\; = x - iy $,
in a plane domain $ D $
which can be represented as
$$ \tag{1 }
w = f( z, \overline{z}\; ) = \sum_{k=0}^ { m-1} {\overline{z}\; } {} ^ {k} f _ {k} ( z),
$$
where $ f _ {k} ( z) $,
$ k = 0 \dots m- 1 $,
are complex-analytic functions in $ D $.
In other words, a poly-analytic function $ w $
of order $ m $
can be defined as a function which in $ D $
has continuous partial derivatives with respect to $ x $
and $ y $,
or with respect to $ z $
and $ \overline{z}\; $,
up to order $ m $
inclusive and which everywhere in $ D $
satisfies the generalized Cauchy–Riemann condition:
$$
\frac{\partial ^ {m} w }{\partial {\overline{z}\; } {} ^ {m} }
= 0 .
$$
For $ m = 1 $
one obtains analytic functions (cf. Analytic function).
For a function $ u = u( x, y) $
to be the real (or imaginary) part of some poly-analytic function $ w = u + iv $
in a domain $ D $,
it is necessary and sufficient that $ u $
be a poly-harmonic function in $ D $.
One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [1]).
A poly-analytic function of multi-order $ m = ( m _ {1} \dots m _ {n} ) $
in the complex variables $ z _ {1} \dots z _ {n} $
and $ \overline{z}\; _ {1} \dots \overline{z}\; _ {n} $
in a domain $ D $
of the complex space $ \mathbf C ^ {n} $,
$ n \geq 1 $,
is a function of the form
$$
w = \sum _ {k _ {1} \dots k _ {n} = 0 } ^ { {m } _ {1} - 1 \dots m _ {n} - 1 } \overline{z}\; {} _ {1} ^ {k _ {1} } \dots \overline{z}\; {} _ {n} ^ {k _ {n} } f _ {k _ {1} \dots k _ {n} } ( z _ {1} \dots z _ {n} ),
$$
where $ f _ {k _ {1} \dots k _ {n} } $
are analytic functions of the variables $ z _ {1} \dots z _ {n} $
in $ D $.
References
| [1] | M.B. Balk, M.F. Zuev, "On polyanalytic functions" Russian Math. Surveys , 25 : 5 (1970) pp. 201–223 Uspekhi Mat. Nauk , 25 : 5 (1970) pp. 203–226 |