|
|
(10 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | An element of an algebraic construct, first proposed by E. Witt [[#References|[1]]] in 1936 in the context of the description of unramified extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981001.png" />-adic number fields. Witt vectors were subsequently utilized in the study of algebraic varieties over a field of positive characteristic [[#References|[3]]], in the theory of commutative algebraic groups [[#References|[4]]], [[#References|[5]]], and in the theory of formal groups [[#References|[6]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981002.png" /> be an associative, commutative ring with unit element. Witt vectors with components in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981003.png" /> are infinite sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981004.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981005.png" />, which are added and multiplied in accordance with the following rules:
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981006.png" /></td> </tr></table>
| + | An element of an algebraic construct, first proposed by E. Witt [[#References|[1]]] in 1936 in the context of the description of unramified extensions of $ p $- |
| + | adic number fields. Witt vectors were subsequently utilized in the study of algebraic varieties over a field of positive characteristic [[#References|[3]]], in the theory of commutative algebraic groups [[#References|[4]]], [[#References|[5]]], and in the theory of formal groups [[#References|[6]]]. Let $ A $ |
| + | be an associative, commutative ring with unit element. Witt vectors with components in $ A $ |
| + | are infinite sequences $ a = (a _{0} , a _{1} , . . . ) $, |
| + | $ a _{i} \in A $, |
| + | which are added and multiplied in accordance with the following rules: $$ |
| + | (a _{0} ,\ a _{1} ,\dots ) \dot{+} |
| + | (b _{0} ,\ b _{1} ,\dots ) = |
| + | $$ |
| + | $$ |
| + | = |
| + | (S _{0} (a _{0} ,\ b _{0} ),\ S _{1} (a _{0} ,\ a _{1} ; \ b _{0} ,\ b _{1} ) , . . . ), |
| + | $$ |
| + | $$ |
| + | (a _{0} ,\ a _{1} , . . . ) \dot \times (b _{0} ,\ b _{1} , . . . ) = |
| + | $$ |
| + | $$ |
| + | = |
| + | (M _{0} (a _{0} ,\ b _{0} ),\ M _{1} (a _{0} ,\ a _{1} ; \ b _{0} ,\ b _{1} ) , . . . ), |
| + | $$ |
| + | where $ S _{n} $, |
| + | $ M _{n} $ |
| + | are polynomials in the variables $ X _{0} \dots X _{n} $, |
| + | $ Y _{0} \dots Y _{n} $ |
| + | with integer coefficients, uniquely defined by the conditions $$ |
| + | \Phi _{n} (S _{0} \dots S _{n} ) = |
| + | \Phi _{n} (X _{0} \dots X _{n} ) + |
| + | \Phi _{n} (Y _{0} \dots Y _{n} ), |
| + | $$ |
| + | $$ |
| + | \Phi _{n} (M _{0} \dots M _{n} ) = \Phi _{n} (X _{0} \dots X _{n} ) \cdot \Phi _{n} (Y _{0} \dots Y _{n} ); |
| + | $$ |
| + | where $$ |
| + | \Phi _{n} = Z _{0} ^ {p ^ n} + pZ _{1} ^ {p ^ n-1} + \dots |
| + | + p ^{n} Z _{n} $$ |
| + | are polynomials, $ n \in \mathbf N $ |
| + | and $ p $ |
| + | is a prime number. In particular, $$ |
| + | S _{0} = X _{0} + Y _{0} ; |
| + | S _{1} = X _{1} + Y _{1} - |
| + | \sum _ {i = 1} ^ {p-1} { |
| + | \frac{1}{p} |
| + | } |
| + | \binom{p}{i} |
| + | X _{0} ^{i} Y _{0} ^{p-i} ; |
| + | $$ |
| + | $$ |
| + | M _{0} = X _{0} Y _{0} , M _{1} = X |
| + | _{0} ^{p} Y _{1} + X _{1} Y _{0} ^{p} + pX _{1} Y _{1} . |
| + | $$ |
| + | The Witt vectors with the operations introduced above form a ring, called the ring of Witt vectors and denoted by $ W(A) $. |
| + | For any natural number $ n $ |
| + | there also exists a definition of the ring $ W _{n} (A) $ |
| + | of truncated Witt vectors of length $ n $. |
| + | The elements of this ring are finite tuples $ a = (a _{0} \dots a _{n-1} ) $, |
| + | $ a _{i} \in A $, |
| + | with the addition and multiplication operations described above. The canonical mappings $$ |
| + | R: \ W _{n+1} (A) \rightarrow W _{n} (A), |
| + | $$ |
| + | $$ |
| + | R ((a _{0} \dots a _{n} )) = (a _{0} \dots a _{n-1} ) , |
| + | $$ |
| + | $$ |
| + | T: \ W _{n} (A) \rightarrow W _{n+1} (A), |
| + | $$ |
| + | $$ |
| + | T ((a _{0} \dots a _{n-1} )) = (0,\ a _{0} \dots a _{n-1} ), |
| + | $$ |
| + | are homomorphisms. The rule $ A \mapsto W(A) $( |
| + | or $ A \mapsto W _{n} (A) $) |
| + | defines a covariant functor from the category of commutative rings with unit element into the category of rings. This functor may be represented by the ring of polynomials $ \mathbf Z [X _{0} \dots X _{n} ,\dots ] $( |
| + | or $ \mathbf Z [X _{0} \dots X _{n-1} ] $) |
| + | on which the structure of a ring object has been defined. The spectrum $ \mathop{\rm Spec}\nolimits \ \mathbf Z [X _{0} \dots X _{n} ,\dots ] $( |
| + | or $ \mathop{\rm Spec}\nolimits \ \mathbf Z [X _{0} \dots X _{n-1} ] $) |
| + | is known as a Witt scheme (or a truncated Witt scheme) and is a ring scheme [[#References|[3]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981007.png" /></td> </tr></table>
| + | Each element $ a \in A $ |
| + | defines a Witt vector $$ |
| + | a ^ \tau = (a,\ 0,\ 0 , . . . ) \in W \ (A), |
| + | $$ |
| + | called the Teichmüller representative of the element $ a $. |
| + | If $ A = k $ |
| + | is a perfect field of characteristic $ p > 0 $, |
| + | $ W(k) $ |
| + | is a complete discrete valuation ring of zero characteristic with field of residues $ k $ |
| + | and maximal ideal $ pW(k) $. |
| + | Each element $ \omega \in W(k) $ |
| + | can be uniquely represented as $$ |
| + | \omega = \omega _{0} ^ \tau + |
| + | p \omega _{1} ^ \tau + p ^{2} \omega _{2} ^ \tau + \dots , |
| + | $$ |
| + | where $ \omega _{i} \in k $. |
| + | Conversely, each such ring $ A $ |
| + | with field of residues $ k = A/p $ |
| + | is canonically isomorphic to the ring $ W(k) $. |
| + | The Teichmüller representation makes it possible to construct a canonical multiplicative homomorphism $ k \rightarrow W(k) $, |
| + | splitting the mapping $$ |
| + | W (k) \rightarrow W (k) / p \simeq k. |
| + | $$ |
| + | If $ k = \mathbf F _{p} $ |
| + | is the prime field of $ p $ |
| + | elements, $ W( \mathbf F _{p} ) $ |
| + | is the ring of integral $ p $- |
| + | adic numbers $ \mathbf Z _{p} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981008.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w0981009.png" /></td> </tr></table>
| |
− |
| |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810011.png" /> are polynomials in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810013.png" /> with integer coefficients, uniquely defined by the conditions
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810014.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810015.png" /></td> </tr></table>
| |
− |
| |
− | where
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810016.png" /></td> </tr></table>
| |
− |
| |
− | are polynomials, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810018.png" /> is a prime number. In particular,
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810019.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810020.png" /></td> </tr></table>
| |
− |
| |
− | The Witt vectors with the operations introduced above form a ring, called the ring of Witt vectors and denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810021.png" />. For any natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810022.png" /> there also exists a definition of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810023.png" /> of truncated Witt vectors of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810024.png" />. The elements of this ring are finite tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810026.png" />, with the addition and multiplication operations described above. The canonical mappings
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810027.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810028.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810029.png" /></td> </tr></table>
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810030.png" /></td> </tr></table>
| |
− |
| |
− | are homomorphisms. The rule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810031.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810032.png" />) defines a covariant functor from the category of commutative rings with unit element into the category of rings. This functor may be represented by the ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810033.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810034.png" />) on which the structure of a ring object has been defined. The spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810035.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810036.png" />) is known as a Witt scheme (or a truncated Witt scheme) and is a ring scheme [[#References|[3]]].
| |
− |
| |
− | Each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810037.png" /> defines a Witt vector
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810038.png" /></td> </tr></table>
| |
− |
| |
− | called the Teichmüller representative of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810039.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810040.png" /> is a perfect field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810042.png" /> is a complete discrete valuation ring of zero characteristic with field of residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810043.png" /> and maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810044.png" />. Each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810045.png" /> can be uniquely represented as
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810046.png" /></td> </tr></table>
| |
− |
| |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810047.png" />. Conversely, each such ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810048.png" /> with field of residues <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810049.png" /> is canonically isomorphic to the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810050.png" />. The Teichmüller representation makes it possible to construct a canonical multiplicative homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810051.png" />, splitting the mapping
| |
− |
| |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810052.png" /></td> </tr></table>
| |
− |
| |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810053.png" /> is the prime field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810054.png" /> elements, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810055.png" /> is the ring of integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810056.png" />-adic numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810057.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Witt, "Zyklische Körper und Algebren der characteristik <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810058.png" /> vom Grad <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810059.png" />. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassen-körper der Charakteristik <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810060.png" />" ''J. Reine Angew. Math.'' , '''176''' (1936) pp. 126–140</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , North-Holland (1971)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. Dieudonné, "Groupes de Lie et hyperalgèbres de Lie sur un corps de charactéristique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810061.png" /> VII" ''Math. Ann.'' , '''134''' (1957) pp. 114–133</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Witt, "Zyklische Körper und Algebren der characteristik <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810058.png" /> vom Grad <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810059.png" />. Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassen-körper der Charakteristik <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810060.png" />" ''J. Reine Angew. Math.'' , '''176''' (1936) pp. 126–140 {{MR|}} {{ZBL|0016.05101}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebra" , Addison-Wesley (1974) {{MR|0783636}} {{ZBL|0712.00001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) {{MR|0209285}} {{ZBL|0187.42701}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959) {{MR|0103191}} {{ZBL|}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , North-Holland (1971) {{MR|1611211}} {{MR|0302656}} {{MR|0284446}} {{ZBL|0223.14009}} {{ZBL|0203.23401}} {{ZBL|0134.16503}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> J. Dieudonné, "Groupes de Lie et hyperalgèbres de Lie sur un corps de charactéristique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810061.png" /> VII" ''Math. Ann.'' , '''134''' (1957) pp. 114–133 {{MR|}} {{ZBL|}} </TD></TR></table> |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | There is a generalization of the construction above which works for all primes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810062.png" /> simultaneously, [[#References|[a3]]]: a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810063.png" /> called the big Witt vector. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810064.png" /> is the category of commutative, associative rings with unit element. The functor described above, of Witt vectors of infinite length associated to the prime <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810066.png" />, is a quotient of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810067.png" /> which can be conveniently denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810068.png" />. | + | There is a generalization of the construction above which works for all primes $ p $ |
− | | + | simultaneously, [[#References|[a3]]]: a functor $ W : \ \mathbf{Ring} \rightarrow \mathbf{Ring} $ |
− | For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810069.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810070.png" /> be the polynomial
| + | called the big Witt vector. Here, $ \mathbf{Ring} $ |
− | | + | is the category of commutative, associative rings with unit element. The functor described above, of Witt vectors of infinite length associated to the prime $ p $, |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810071.png" /></td> </tr></table>
| + | is a quotient of $ W $ |
− | | + | which can be conveniently denoted by $ W _ {p ^ \infty} $. |
− | Then there is the following characterization theorem for the Witt vectors. There is a unique functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810072.png" /> satisfying the following properties: 1) as a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810075.png" /> for any ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810076.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810077.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810078.png" /> is a functorial homomorphism of rings for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810079.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810080.png" />.
| |
− | | |
− | The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810081.png" /> admits functorial ring endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810082.png" />, for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810083.png" />, that are uniquely characterized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810084.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810085.png" />. Finally, there is a functorial homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810086.png" /> that is uniquely characterized by the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810087.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810089.png" />.
| |
− | | |
− | To construct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810090.png" />, define polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810091.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810092.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810093.png" /> by the requirements
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810094.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810095.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810096.png" /></td> </tr></table>
| |
− | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810097.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810098.png" /> are polynomials in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w09810099.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100100.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100101.png" /> are polynomials in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100102.png" /> and they all have integer coefficients. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100103.png" /> is now defined as the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100104.png" /> with addition, multiplication and "minus" :
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100105.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100106.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100107.png" /></td> </tr></table>
| |
− | | |
− | The zero of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100108.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100109.png" /> and the unit element is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100110.png" />. The Frobenius endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100111.png" /> and the Artin–Hasse exponential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100112.png" /> are constructed by means of similar considerations, i.e. they are also given by certain universal polynomials. In addition there are the Verschiebung morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100113.png" />, which are characterized by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100114.png" /></td> </tr></table>
| |
− | | |
− | The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100115.png" /> are group endomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100116.png" /> but not ring endomorphisms.
| |
− | | |
− | The ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100117.png" /> define a topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100118.png" /> making <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100119.png" /> a separated complete topological ring.
| |
− | | |
− | For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100120.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100121.png" /> be the Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100122.png" /> under multiplication of power series;
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100123.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100124.png" /></td> </tr></table>
| |
− | | |
− | defines a functional isomorphism of Abelian groups, and using the isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100125.png" /> there is a commutative ring structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100126.png" />. Using <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100127.png" /> the Artin–Hasse exponential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100128.png" /> defines a functorial homomorphism of rings
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100129.png" /></td> </tr></table>
| |
− | | |
− | making <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100130.png" /> a functorial special [[Lambda-ring|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100131.png" />-ring]]. The Artin–Hasse exponential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100132.png" /> defines a cotriple structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100133.png" /> and the co-algebras for this co-triple are precisely the special <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100134.png" />-rings (cf. also [[Category|Category]] and [[Triple|Triple]]).
| |
− | | |
− | On <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100135.png" /> the Frobenius and Verschiebung endomorphisms satisfy
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100136.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100137.png" /></td> </tr></table>
| |
− | | |
− | and are completely determined by this (plus functoriality and additivity in the case of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100138.png" />).
| |
− | | |
− | For each supernatural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100139.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100140.png" />, one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100141.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100142.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100144.png" />-adic valuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100145.png" />, i.e. the number of prime factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100146.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100147.png" />. Let
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100148.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100149.png" /></td> </tr></table>
| |
− | | |
− | Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100150.png" /> is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100151.png" /> and for each supernatural <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100152.png" /> a corresponding ring of Witt vectors is defined by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100153.png" /></td> </tr></table>
| |
− | | |
− | In particular, one thus finds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100154.png" />, the ring of infinite-length Witt vectors for the prime <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100155.png" />, discussed in the main article above, as a quotient of the ring of big Witt vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100156.png" />.
| |
− | | |
− | The Artin–Hasse exponential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100157.png" /> is compatible in a certain sense with the formation of these quotients, and using also the isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100158.png" /> one thus finds a mapping
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100159.png" /></td> </tr></table>
| |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100160.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100161.png" />-adic integers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100162.png" /> the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100163.png" /> elements, which can be identified with the classical morphism defined by Artin and Hasse [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]].
| |
− | | |
− | As an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100164.png" /> is isomorphic to the group of curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100165.png" /> of curves in the one-dimensional multiplicative [[Formal group|formal group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100166.png" />. In this way there is a Witt-vector-like Abelian-group-valued functor associated to every one-dimensional formal group. For special cases, such as the Lubin–Tate formal groups, this gives rise to ring-valued functors called ramified Witt vectors, [[#References|[a3]]], [[#References|[a4]]].
| |
− | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100167.png" /> be the sequence of polynomials with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100168.png" /> defined by
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100169.png" /></td> </tr></table>
| |
| | | |
− | The Cartier ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100170.png" /> is the ring of all formal expressions
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100171.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | For each $ n \in \{ 1,\ 2,\dots \} $, |
| + | let $ w _{n} (X) $ |
| + | be the polynomial $$ |
| + | w _{n} (X) = \sum _{d\mid n} dX _{d} ^{n/d} . |
| + | $$ |
| + | Then there is the following characterization theorem for the Witt vectors. There is a unique functor $ W : \ \mathbf{Ring} \rightarrow \mathbf{Ring} $ |
| + | satisfying the following properties: 1) as a functor $ W: \ \mathbf{Ring} \rightarrow \mathop{\rm Set}\nolimits $, |
| + | $ W (A) = \{ {(a _{1} ,\ a _{2} , \dots )} : {a _{i} \in A} \} $ |
| + | and $ W ( \phi ) (a _{1} ,\ a _{2} , . . ) = ( \phi (a _{1} ) ,\ \phi (a _{2} ) ,\dots ) $ |
| + | for any ring homomorphism $ \phi : \ A \rightarrow B $; |
| + | 2) $ w _ {n , A} : \ W(A) \rightarrow A $, |
| + | $ ( a _{1} ,\ a _{2} ,\dots ) \mapsto w _{n} (a _{1} ,\ a _{2} ,\dots ) $ |
| + | is a functorial homomorphism of rings for every $ A $ |
| + | and $ n \in \{ 1,\ 2,\dots \} $. |
| | | |
− | with the calculation rules
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100172.png" /></td> </tr></table>
| + | The functor $ W $ |
| + | admits functorial ring endomorphisms $ \mathbf f _{n} : \ W \rightarrow W $, |
| + | for every $ n \in \{ 1,\ 2,\dots \} $, |
| + | that are uniquely characterized by $ w _{n} \mathbf f _{m} = w _{nm} $ |
| + | for all $ n,\ m \in \{ 1,\ 2,\dots \} $. |
| + | Finally, there is a functorial homomorphism $ \Delta : \ W(-) \rightarrow W(W(-)) $ |
| + | that is uniquely characterized by the property $ w _ {n, W(A)} \Delta _{A} = \mathbf f _ {n, A} $ |
| + | for all $ n $, |
| + | $ A $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100173.png" /></td> </tr></table>
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100174.png" /></td> </tr></table>
| + | To construct $ W(A) $, |
| + | define polynomials $ \Sigma _{1} \dots \Sigma _{n} ,\dots $; |
| + | $ \Pi _{1} \dots \Pi _{n} ,\dots $; |
| + | $ r _{1} \dots r _{n} ,\dots $ |
| + | by the requirements $$ |
| + | w _{n} ( \Sigma _{1} \dots \Sigma _{n} ) = |
| + | w _{n} (X) + w _{n} (Y), |
| + | $$ |
| + | $$ |
| + | w _{n} ( \Pi _{1} \dots \Pi _{n} ) = w _{n} (X) w _{n} (Y), |
| + | $$ |
| + | $$ |
| + | w _{n} ( r _{1} \dots r _{n} ) = - w _{n} ( X) . |
| + | $$ |
| + | The $ \Sigma _{n} $ |
| + | and $ \Pi _{n} $ |
| + | are polynomials in $ X _{1} \dots X _{n} $; |
| + | $ Y _{1} \dots Y _{n} $ |
| + | and the $ r _{n} $ |
| + | are polynomials in the $ X _{1} \dots X _{n} $ |
| + | and they all have integer coefficients. $ W(A) $ |
| + | is now defined as the set $ W(A) = \{ {\mathbf a = (a _{1} ,\ a _{2} ,\dots )} : {a _{i} \in A} \} $ |
| + | with addition, multiplication and "minus" : $$ |
| + | (a _{1} ,\ a _{2} ,\dots ) + |
| + | (b _{1} ,\ b _{2} ,\dots ) = |
| + | ( \Sigma _{1} ( \mathbf a ) ,\ \Sigma _{2} ( \mathbf a ) ,\dots ) |
| + | $$ |
| + | $$ |
| + | (a _{1} ,\ a _{2} ,\dots ) (b _{1} ,\ b _{2} ,\dots ) |
| + | = ( \Pi _{1} ( \mathbf a ) ,\ \Pi _{2} ( \mathbf a ) ,\dots ) - |
| + | $$ |
| + | $$ |
| + | - |
| + | (a _{1} ,\ a _{2} ,\dots ) = ( r _{1} ( \mathbf a ) ,\ r _{2} ( \mathbf a ) ,\dots ) . |
| + | $$ |
| + | The zero of $ W(A) $ |
| + | is $ ( 0,\ 0 ,\dots ) $ |
| + | and the unit element is $ ( 1,\ 0 ,\ 0 ,\dots ) $. |
| + | The Frobenius endomorphisms $ \mathbf f _{n} $ |
| + | and the Artin–Hasse exponential $ \Delta $ |
| + | are constructed by means of similar considerations, i.e. they are also given by certain universal polynomials. In addition there are the Verschiebung morphisms $ \mathbf V _{n} : \ W(-) \rightarrow W(-) $, |
| + | which are characterized by $$ |
| + | w _{m} \mathbf V _{n} = \left \{ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100175.png" /></td> </tr></table>
| + | \begin{array}{ll} |
| + | 0 & \textrm{ if } n \textrm{ does not divide } m, \\ |
| + | nw _{m/n} & \textrm{ if } n \textrm{ divides } m. \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100176.png" /></td> </tr></table>
| + | \right .$$ |
| + | The $ \mathbf V _{m} $ |
| + | are group endomorphisms of $ W(-) $ |
| + | but not ring endomorphisms. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100177.png" /></td> </tr></table>
| + | The ideals $ I _{n} = \{ ( 0 \dots 0,\ a _{n+1} ,\ a _{n+2} ,\dots ) \} \subset W(A) $ |
| + | define a topology on $ W(A) $ |
| + | making $ W(A) $ |
| + | a separated complete topological ring. |
| | | |
− | Commutative formal groups over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100178.png" /> are classified by certain modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100179.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100180.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100181.png" />-algebra, a simpler ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100182.png" /> can be used for this purpose. It consists of all expressions (*) where now the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100183.png" /> only run over the powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100184.png" /> of the prime <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100185.png" />. The calculation rules are the analogous ones. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100186.png" /> is a perfect field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100187.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100188.png" /> denotes the Frobenius endomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100189.png" /> (which in this case is given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100190.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100191.png" /> can be described as the ring of all expressions
| + | For each $ A \in \mathbf{Ring} $, |
| + | let $ \Lambda (A) $ |
| + | be the Abelian group $ 1 + t A [[t]] $ |
| + | under multiplication of power series; $$ |
| + | \overline{E}\; : \ W(A) \rightarrow \Lambda (A), |
| + | $$ |
| + | $$ |
| + | ( a _{1} ,\ a _{2} ,\dots ) \mapsto \prod _{i=1} ^ \infty (1- a _{i} t ^{i} ) , |
| + | $$ |
| + | defines a functional isomorphism of Abelian groups, and using the isomorphism $ \overline{E}\; $ |
| + | there is a commutative ring structure on $ \Lambda (A) $. |
| + | Using $ \overline{E}\; $ |
| + | the Artin–Hasse exponential $ \Delta $ |
| + | defines a functorial homomorphism of rings $$ |
| + | W(A) \rightarrow \Lambda (W(A)) |
| + | $$ |
| + | making $ W(A) $ |
| + | a functorial special [[Lambda-ring| $ \lambda $- |
| + | ring]]. The Artin–Hasse exponential $ \Delta : \ W \rightarrow W \circ W $ |
| + | defines a cotriple structure on $ W $ |
| + | and the co-algebras for this co-triple are precisely the special $ \lambda $- |
| + | rings (cf. also [[Category|Category]] and [[Triple|Triple]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100192.png" /></td> </tr></table>
| + | On $ \Lambda (A) $ |
| + | the Frobenius and Verschiebung endomorphisms satisfy $$ |
| + | \mathbf f _{n} (1-at) = (1-a ^{n} t) , |
| + | $$ |
| + | $$ |
| + | \mathbf V _{n} f(t) = f(t ^{n} ) , |
| + | $$ |
| + | and are completely determined by this (plus functoriality and additivity in the case of $ \mathbf f _{n} $). |
| | | |
− | in two symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100193.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100194.png" /> and with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100195.png" />, with the extra condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100196.png" /> and the calculation rules
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100197.png" /></td> </tr></table>
| + | For each supernatural number $ \mathbf n = \prod _{p} p ^ {\alpha _ p} $, |
| + | $ \alpha _{p} \in \{ 0,\ 1,\ 2,\dots \} \cup \{ \infty \} $, |
| + | one defines $ N ( \mathbf n ) = \{ {n \in \{ 1,\ 2,\dots \}} : {v _{p} (n) \leq \alpha _{p } \textrm{ for all "prime" numbers } p} \} $, |
| + | where $ v _{p} $ |
| + | is the $ p $- |
| + | adic valuation of $ n $, |
| + | i.e. the number of prime factors $ p $ |
| + | in $ n $. |
| + | Let $$ |
| + | \mathfrak a _ {\mathbf n} (A) = |
| + | $$ |
| + | $$ |
| + | = |
| + | \{ {(a _{1} ,\ a _{2} ,\dots )} : { |
| + | a _{d} = 0 \textrm{ for all } d \in N ( \mathbf n )} \} . |
| + | $$ |
| + | Then $ \mathfrak a _ {\mathbf n} (A) $ |
| + | is an ideal in $ W(A) $ |
| + | and for each supernatural $ \mathbf n $ |
| + | a corresponding ring of Witt vectors is defined by $$ |
| + | W _ {\mathbf n} (A) = W(A) / \mathfrak a _ {\mathbf n} (A) . |
| + | $$ |
| + | In particular, one thus finds $ W _ {p ^ \infty} (A) $, |
| + | the ring of infinite-length Witt vectors for the prime $ p $, |
| + | discussed in the main article above, as a quotient of the ring of big Witt vectors $ W(A) $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100198.png" /></td> </tr></table>
| |
| | | |
− | This ring, and also its subring of all expressions
| + | The Artin–Hasse exponential $ \Delta : \ W \rightarrow W \circ W $ |
| + | is compatible in a certain sense with the formation of these quotients, and using also the isomorphism $ \overline{E}\; $ |
| + | one thus finds a mapping $$ |
| + | \mathbf Z _{p} = W _ {p ^ \infty} ( \mathbf F _{p} ) \rightarrow |
| + | \Lambda (W _ {p ^ \infty} ( \mathbf F _{p} ) ) = |
| + | \Lambda ( \mathbf Z _{p} ) , |
| + | $$ |
| + | where $ \mathbf Z _{p} $ |
| + | denotes the $ p $- |
| + | adic integers and $ \mathbf F _{p} $ |
| + | the field of $ p $ |
| + | elements, which can be identified with the classical morphism defined by Artin and Hasse [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100199.png" /></td> </tr></table>
| + | As an Abelian group $ W(A) $ |
| + | is isomorphic to the group of curves $ {\mathcal C} ( \mathbf G _{m} ; \ A) $ |
| + | of curves in the one-dimensional multiplicative [[Formal group|formal group]] $ \mathbf G _{m} $. |
| + | In this way there is a Witt-vector-like Abelian-group-valued functor associated to every one-dimensional formal group. For special cases, such as the Lubin–Tate formal groups, this gives rise to ring-valued functors called ramified Witt vectors, [[#References|[a3]]], [[#References|[a4]]]. |
| | | |
− | is known as the Dieudonné ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100200.png" /> and certain modules (called Dieudonné modules) over it classify unipotent commutative affine group schemes over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100201.png" />, cf. [[#References|[a5]]]. | + | Let $ r _{n} (X,\ Y) $ |
| + | be the sequence of polynomials with coefficients in $ \mathbf Z $ |
| + | defined by $$ |
| + | X ^{n} + Y ^{n} = \sum _{d\mid n} d r _{d} (X,\ Y) ^{n/d} . |
| + | $$ |
| + | The Cartier ring $ \mathop{\rm Cart}\nolimits (A) $ |
| + | is the ring of all formal expressions $$ \tag{*} |
| + | \sum _ {i,j \in \{ 1, 2,\dots \}} |
| + | \mathbf V _{i} \langle a _{ij} \rangle \mathbf f _{j} $$ |
| + | with the calculation rules $$ |
| + | \langle a><b\rangle = \langle ab\rangle , |
| + | \langle 1\rangle = \mathbf f _{1} = \mathbf V _{1} = |
| + | \textrm{ unit element } 1 , |
| + | $$ |
| + | $$ |
| + | \mathbf V _{n} \mathbf V _{m} = \mathbf V _{nm} , |
| + | \mathbf f _{n} \mathbf f _{m} = \mathbf f _{nm} , |
| + | $$ |
| + | $$ |
| + | \langle a\rangle \mathbf V _{m} = \mathbf V _{m} \langle a ^{m} \rangle , |
| + | \mathbf f _{m} \langle a\rangle = \langle a ^{m} \rangle \mathbf f _{m} , |
| + | $$ |
| + | $$ |
| + | \mathbf V _{m} \mathbf f _{n} = \mathbf f _{n} \mathbf V _{m} \textrm{ if } (n,\ m) = 1 , |
| + | $$ |
| + | $$ |
| + | \mathbf f _{n} \mathbf V _{n} = 1 + \dots + 1 ( n \textrm{ summands } ) , |
| + | $$ |
| + | $$ |
| + | \langle a+b\rangle = \sum _{n=1} ^ \infty \mathbf V _{n} \langle r _{n} ( a,\ b) \rangle \mathbf f _{n} . |
| + | $$ |
| + | Commutative formal groups over $ A $ |
| + | are classified by certain modules over $ \mathop{\rm Cart}\nolimits (A) $. |
| + | In case $ A $ |
| + | is a $ \mathbf Z _{(p)} $- |
| + | algebra, a simpler ring $ \mathop{\rm Cart}\nolimits _{p} (A) $ |
| + | can be used for this purpose. It consists of all expressions (*) where now the $ i,\ j $ |
| + | only run over the powers $ p ^{0} ,\ p ^{1} ,\ p ^{2} , . . . $ |
| + | of the prime $ p $. |
| + | The calculation rules are the analogous ones. In case $ k $ |
| + | is a perfect field of characteristic $ p > 0 $ |
| + | and $ \sigma $ |
| + | denotes the Frobenius endomorphism of $ W(k) $( |
| + | which in this case is given by $ \sigma ( a _{1} ,\ a _{2} , . . . ) = ( a _{1} ^{p} ,\ a _{2} ^{p} , . . ) $), |
| + | then $ \mathop{\rm Cart}\nolimits _{p} (k) $ |
| + | can be described as the ring of all expressions $$ |
| + | x _{0} + \sum _{i=1} ^ \infty x _{i} \mathbf V ^{i} + |
| + | \sum _{j=1} ^ \infty y _{j} \mathbf f ^{i} , |
| + | $$ |
| + | in two symbols $ \mathbf f $ |
| + | and $ \mathbf V $ |
| + | and with coefficients in $ W _ {p ^ \infty} (k) $, |
| + | with the extra condition $ \mathop{\rm lim}\nolimits _ {i \rightarrow \infty} \ y _{i} = 0 $ |
| + | and the calculation rules $$ |
| + | \mathbf f x = \sigma (x) \mathbf f , |
| + | \mathbf V x = \sigma ^{-1} (x) \mathbf V , |
| + | $$ |
| + | $$ |
| + | \mathbf f \mathbf V = \mathbf V \mathbf f = p . |
| + | $$ |
| + | This ring, and also its subring of all expressions $$ |
| + | x _{0} + \sum _{i=1} ^ \infty x _{i} \mathbf V ^{i} + |
| + | \sum _{j=1} ^ {< \infty} y _{j} \mathbf f ^{j} , |
| + | $$ |
| + | is known as the Dieudonné ring $ D(k) $ |
| + | and certain modules (called Dieudonné modules) over it classify unipotent commutative affine group schemes over $ k $, |
| + | cf. [[#References|[a5]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100202.png" />-ten Potenzreste im Körper der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100203.png" />-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Hazewinkel, "Formal group laws and applications" , Acad. Press (1978)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , North-Holland (1971)</TD></TR></table> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100202.png" />-ten Potenzreste im Körper der <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098100/w098100203.png" />-ten Einheitswurzeln" ''Abh. Math. Sem. Univ. Hamburg'' , '''6''' (1928) pp. 146–162 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" ''Duke Math. J.'' , '''21''' (1954) pp. 575–581 {{MR|73645}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" ''Trans. Amer. Math. Soc.'' , '''259''' (1980) pp. 47–63 {{MR|0561822}} {{ZBL|0437.13014}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Hazewinkel, "Formal group laws and applications" , Acad. Press (1978) {{MR|506881}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> M. Demazure, P. Gabriel, "Groupes algébriques" , '''1''' , North-Holland (1971) {{MR|1611211}} {{MR|0302656}} {{MR|0284446}} {{ZBL|0223.14009}} {{ZBL|0203.23401}} {{ZBL|0134.16503}} </TD></TR></table> |
An element of an algebraic construct, first proposed by E. Witt [1] in 1936 in the context of the description of unramified extensions of $ p $-
adic number fields. Witt vectors were subsequently utilized in the study of algebraic varieties over a field of positive characteristic [3], in the theory of commutative algebraic groups [4], [5], and in the theory of formal groups [6]. Let $ A $
be an associative, commutative ring with unit element. Witt vectors with components in $ A $
are infinite sequences $ a = (a _{0} , a _{1} , . . . ) $,
$ a _{i} \in A $,
which are added and multiplied in accordance with the following rules: $$
(a _{0} ,\ a _{1} ,\dots ) \dot{+}
(b _{0} ,\ b _{1} ,\dots ) =
$$
$$
=
(S _{0} (a _{0} ,\ b _{0} ),\ S _{1} (a _{0} ,\ a _{1} ; \ b _{0} ,\ b _{1} ) , . . . ),
$$
$$
(a _{0} ,\ a _{1} , . . . ) \dot \times (b _{0} ,\ b _{1} , . . . ) =
$$
$$
=
(M _{0} (a _{0} ,\ b _{0} ),\ M _{1} (a _{0} ,\ a _{1} ; \ b _{0} ,\ b _{1} ) , . . . ),
$$
where $ S _{n} $,
$ M _{n} $
are polynomials in the variables $ X _{0} \dots X _{n} $,
$ Y _{0} \dots Y _{n} $
with integer coefficients, uniquely defined by the conditions $$
\Phi _{n} (S _{0} \dots S _{n} ) =
\Phi _{n} (X _{0} \dots X _{n} ) +
\Phi _{n} (Y _{0} \dots Y _{n} ),
$$
$$
\Phi _{n} (M _{0} \dots M _{n} ) = \Phi _{n} (X _{0} \dots X _{n} ) \cdot \Phi _{n} (Y _{0} \dots Y _{n} );
$$
where $$
\Phi _{n} = Z _{0} ^ {p ^ n} + pZ _{1} ^ {p ^ n-1} + \dots
+ p ^{n} Z _{n} $$
are polynomials, $ n \in \mathbf N $
and $ p $
is a prime number. In particular, $$
S _{0} = X _{0} + Y _{0} ;
S _{1} = X _{1} + Y _{1} -
\sum _ {i = 1} ^ {p-1} {
\frac{1}{p}
}
\binom{p}{i}
X _{0} ^{i} Y _{0} ^{p-i} ;
$$
$$
M _{0} = X _{0} Y _{0} , M _{1} = X
_{0} ^{p} Y _{1} + X _{1} Y _{0} ^{p} + pX _{1} Y _{1} .
$$
The Witt vectors with the operations introduced above form a ring, called the ring of Witt vectors and denoted by $ W(A) $.
For any natural number $ n $
there also exists a definition of the ring $ W _{n} (A) $
of truncated Witt vectors of length $ n $.
The elements of this ring are finite tuples $ a = (a _{0} \dots a _{n-1} ) $,
$ a _{i} \in A $,
with the addition and multiplication operations described above. The canonical mappings $$
R: \ W _{n+1} (A) \rightarrow W _{n} (A),
$$
$$
R ((a _{0} \dots a _{n} )) = (a _{0} \dots a _{n-1} ) ,
$$
$$
T: \ W _{n} (A) \rightarrow W _{n+1} (A),
$$
$$
T ((a _{0} \dots a _{n-1} )) = (0,\ a _{0} \dots a _{n-1} ),
$$
are homomorphisms. The rule $ A \mapsto W(A) $(
or $ A \mapsto W _{n} (A) $)
defines a covariant functor from the category of commutative rings with unit element into the category of rings. This functor may be represented by the ring of polynomials $ \mathbf Z [X _{0} \dots X _{n} ,\dots ] $(
or $ \mathbf Z [X _{0} \dots X _{n-1} ] $)
on which the structure of a ring object has been defined. The spectrum $ \mathop{\rm Spec}\nolimits \ \mathbf Z [X _{0} \dots X _{n} ,\dots ] $(
or $ \mathop{\rm Spec}\nolimits \ \mathbf Z [X _{0} \dots X _{n-1} ] $)
is known as a Witt scheme (or a truncated Witt scheme) and is a ring scheme [3].
Each element $ a \in A $
defines a Witt vector $$
a ^ \tau = (a,\ 0,\ 0 , . . . ) \in W \ (A),
$$
called the Teichmüller representative of the element $ a $.
If $ A = k $
is a perfect field of characteristic $ p > 0 $,
$ W(k) $
is a complete discrete valuation ring of zero characteristic with field of residues $ k $
and maximal ideal $ pW(k) $.
Each element $ \omega \in W(k) $
can be uniquely represented as $$
\omega = \omega _{0} ^ \tau +
p \omega _{1} ^ \tau + p ^{2} \omega _{2} ^ \tau + \dots ,
$$
where $ \omega _{i} \in k $.
Conversely, each such ring $ A $
with field of residues $ k = A/p $
is canonically isomorphic to the ring $ W(k) $.
The Teichmüller representation makes it possible to construct a canonical multiplicative homomorphism $ k \rightarrow W(k) $,
splitting the mapping $$
W (k) \rightarrow W (k) / p \simeq k.
$$
If $ k = \mathbf F _{p} $
is the prime field of $ p $
elements, $ W( \mathbf F _{p} ) $
is the ring of integral $ p $-
adic numbers $ \mathbf Z _{p} $.
References
[1] | E. Witt, "Zyklische Körper und Algebren der characteristik vom Grad . Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassen-körper der Charakteristik " J. Reine Angew. Math. , 176 (1936) pp. 126–140 Zbl 0016.05101 |
[2] | S. Lang, "Algebra" , Addison-Wesley (1974) MR0783636 Zbl 0712.00001 |
[3] | D. Mumford, "Lectures on curves on an algebraic surface" , Princeton Univ. Press (1966) MR0209285 Zbl 0187.42701 |
[4] | J.-P. Serre, "Groupes algébrique et corps des classes" , Hermann (1959) MR0103191 |
[5] | M. Demazure, P. Gabriel, "Groupes algébriques" , 1 , North-Holland (1971) MR1611211 MR0302656 MR0284446 Zbl 0223.14009 Zbl 0203.23401 Zbl 0134.16503 |
[6] | J. Dieudonné, "Groupes de Lie et hyperalgèbres de Lie sur un corps de charactéristique VII" Math. Ann. , 134 (1957) pp. 114–133 |
There is a generalization of the construction above which works for all primes $ p $
simultaneously, [a3]: a functor $ W : \ \mathbf{Ring} \rightarrow \mathbf{Ring} $
called the big Witt vector. Here, $ \mathbf{Ring} $
is the category of commutative, associative rings with unit element. The functor described above, of Witt vectors of infinite length associated to the prime $ p $,
is a quotient of $ W $
which can be conveniently denoted by $ W _ {p ^ \infty} $.
For each $ n \in \{ 1,\ 2,\dots \} $,
let $ w _{n} (X) $
be the polynomial $$
w _{n} (X) = \sum _{d\mid n} dX _{d} ^{n/d} .
$$
Then there is the following characterization theorem for the Witt vectors. There is a unique functor $ W : \ \mathbf{Ring} \rightarrow \mathbf{Ring} $
satisfying the following properties: 1) as a functor $ W: \ \mathbf{Ring} \rightarrow \mathop{\rm Set}\nolimits $,
$ W (A) = \{ {(a _{1} ,\ a _{2} , \dots )} : {a _{i} \in A} \} $
and $ W ( \phi ) (a _{1} ,\ a _{2} , . . ) = ( \phi (a _{1} ) ,\ \phi (a _{2} ) ,\dots ) $
for any ring homomorphism $ \phi : \ A \rightarrow B $;
2) $ w _ {n , A} : \ W(A) \rightarrow A $,
$ ( a _{1} ,\ a _{2} ,\dots ) \mapsto w _{n} (a _{1} ,\ a _{2} ,\dots ) $
is a functorial homomorphism of rings for every $ A $
and $ n \in \{ 1,\ 2,\dots \} $.
The functor $ W $
admits functorial ring endomorphisms $ \mathbf f _{n} : \ W \rightarrow W $,
for every $ n \in \{ 1,\ 2,\dots \} $,
that are uniquely characterized by $ w _{n} \mathbf f _{m} = w _{nm} $
for all $ n,\ m \in \{ 1,\ 2,\dots \} $.
Finally, there is a functorial homomorphism $ \Delta : \ W(-) \rightarrow W(W(-)) $
that is uniquely characterized by the property $ w _ {n, W(A)} \Delta _{A} = \mathbf f _ {n, A} $
for all $ n $,
$ A $.
To construct $ W(A) $,
define polynomials $ \Sigma _{1} \dots \Sigma _{n} ,\dots $;
$ \Pi _{1} \dots \Pi _{n} ,\dots $;
$ r _{1} \dots r _{n} ,\dots $
by the requirements $$
w _{n} ( \Sigma _{1} \dots \Sigma _{n} ) =
w _{n} (X) + w _{n} (Y),
$$
$$
w _{n} ( \Pi _{1} \dots \Pi _{n} ) = w _{n} (X) w _{n} (Y),
$$
$$
w _{n} ( r _{1} \dots r _{n} ) = - w _{n} ( X) .
$$
The $ \Sigma _{n} $
and $ \Pi _{n} $
are polynomials in $ X _{1} \dots X _{n} $;
$ Y _{1} \dots Y _{n} $
and the $ r _{n} $
are polynomials in the $ X _{1} \dots X _{n} $
and they all have integer coefficients. $ W(A) $
is now defined as the set $ W(A) = \{ {\mathbf a = (a _{1} ,\ a _{2} ,\dots )} : {a _{i} \in A} \} $
with addition, multiplication and "minus" : $$
(a _{1} ,\ a _{2} ,\dots ) +
(b _{1} ,\ b _{2} ,\dots ) =
( \Sigma _{1} ( \mathbf a ) ,\ \Sigma _{2} ( \mathbf a ) ,\dots )
$$
$$
(a _{1} ,\ a _{2} ,\dots ) (b _{1} ,\ b _{2} ,\dots )
= ( \Pi _{1} ( \mathbf a ) ,\ \Pi _{2} ( \mathbf a ) ,\dots ) -
$$
$$
-
(a _{1} ,\ a _{2} ,\dots ) = ( r _{1} ( \mathbf a ) ,\ r _{2} ( \mathbf a ) ,\dots ) .
$$
The zero of $ W(A) $
is $ ( 0,\ 0 ,\dots ) $
and the unit element is $ ( 1,\ 0 ,\ 0 ,\dots ) $.
The Frobenius endomorphisms $ \mathbf f _{n} $
and the Artin–Hasse exponential $ \Delta $
are constructed by means of similar considerations, i.e. they are also given by certain universal polynomials. In addition there are the Verschiebung morphisms $ \mathbf V _{n} : \ W(-) \rightarrow W(-) $,
which are characterized by $$
w _{m} \mathbf V _{n} = \left \{
\begin{array}{ll}
0 & \textrm{ if } n \textrm{ does not divide } m, \\
nw _{m/n} & \textrm{ if } n \textrm{ divides } m. \\
\end{array}
\right .$$
The $ \mathbf V _{m} $
are group endomorphisms of $ W(-) $
but not ring endomorphisms.
The ideals $ I _{n} = \{ ( 0 \dots 0,\ a _{n+1} ,\ a _{n+2} ,\dots ) \} \subset W(A) $
define a topology on $ W(A) $
making $ W(A) $
a separated complete topological ring.
For each $ A \in \mathbf{Ring} $,
let $ \Lambda (A) $
be the Abelian group $ 1 + t A [[t]] $
under multiplication of power series; $$
\overline{E}\; : \ W(A) \rightarrow \Lambda (A),
$$
$$
( a _{1} ,\ a _{2} ,\dots ) \mapsto \prod _{i=1} ^ \infty (1- a _{i} t ^{i} ) ,
$$
defines a functional isomorphism of Abelian groups, and using the isomorphism $ \overline{E}\; $
there is a commutative ring structure on $ \Lambda (A) $.
Using $ \overline{E}\; $
the Artin–Hasse exponential $ \Delta $
defines a functorial homomorphism of rings $$
W(A) \rightarrow \Lambda (W(A))
$$
making $ W(A) $
a functorial special $ \lambda $-
ring. The Artin–Hasse exponential $ \Delta : \ W \rightarrow W \circ W $
defines a cotriple structure on $ W $
and the co-algebras for this co-triple are precisely the special $ \lambda $-
rings (cf. also Category and Triple).
On $ \Lambda (A) $
the Frobenius and Verschiebung endomorphisms satisfy $$
\mathbf f _{n} (1-at) = (1-a ^{n} t) ,
$$
$$
\mathbf V _{n} f(t) = f(t ^{n} ) ,
$$
and are completely determined by this (plus functoriality and additivity in the case of $ \mathbf f _{n} $).
For each supernatural number $ \mathbf n = \prod _{p} p ^ {\alpha _ p} $,
$ \alpha _{p} \in \{ 0,\ 1,\ 2,\dots \} \cup \{ \infty \} $,
one defines $ N ( \mathbf n ) = \{ {n \in \{ 1,\ 2,\dots \}} : {v _{p} (n) \leq \alpha _{p } \textrm{ for all "prime" numbers } p} \} $,
where $ v _{p} $
is the $ p $-
adic valuation of $ n $,
i.e. the number of prime factors $ p $
in $ n $.
Let $$
\mathfrak a _ {\mathbf n} (A) =
$$
$$
=
\{ {(a _{1} ,\ a _{2} ,\dots )} : {
a _{d} = 0 \textrm{ for all } d \in N ( \mathbf n )} \} .
$$
Then $ \mathfrak a _ {\mathbf n} (A) $
is an ideal in $ W(A) $
and for each supernatural $ \mathbf n $
a corresponding ring of Witt vectors is defined by $$
W _ {\mathbf n} (A) = W(A) / \mathfrak a _ {\mathbf n} (A) .
$$
In particular, one thus finds $ W _ {p ^ \infty} (A) $,
the ring of infinite-length Witt vectors for the prime $ p $,
discussed in the main article above, as a quotient of the ring of big Witt vectors $ W(A) $.
The Artin–Hasse exponential $ \Delta : \ W \rightarrow W \circ W $
is compatible in a certain sense with the formation of these quotients, and using also the isomorphism $ \overline{E}\; $
one thus finds a mapping $$
\mathbf Z _{p} = W _ {p ^ \infty} ( \mathbf F _{p} ) \rightarrow
\Lambda (W _ {p ^ \infty} ( \mathbf F _{p} ) ) =
\Lambda ( \mathbf Z _{p} ) ,
$$
where $ \mathbf Z _{p} $
denotes the $ p $-
adic integers and $ \mathbf F _{p} $
the field of $ p $
elements, which can be identified with the classical morphism defined by Artin and Hasse [a1], [a2], [a3].
As an Abelian group $ W(A) $
is isomorphic to the group of curves $ {\mathcal C} ( \mathbf G _{m} ; \ A) $
of curves in the one-dimensional multiplicative formal group $ \mathbf G _{m} $.
In this way there is a Witt-vector-like Abelian-group-valued functor associated to every one-dimensional formal group. For special cases, such as the Lubin–Tate formal groups, this gives rise to ring-valued functors called ramified Witt vectors, [a3], [a4].
Let $ r _{n} (X,\ Y) $
be the sequence of polynomials with coefficients in $ \mathbf Z $
defined by $$
X ^{n} + Y ^{n} = \sum _{d\mid n} d r _{d} (X,\ Y) ^{n/d} .
$$
The Cartier ring $ \mathop{\rm Cart}\nolimits (A) $
is the ring of all formal expressions $$ \tag{*}
\sum _ {i,j \in \{ 1, 2,\dots \}}
\mathbf V _{i} \langle a _{ij} \rangle \mathbf f _{j} $$
with the calculation rules $$
\langle a><b\rangle = \langle ab\rangle ,
\langle 1\rangle = \mathbf f _{1} = \mathbf V _{1} =
\textrm{ unit element } 1 ,
$$
$$
\mathbf V _{n} \mathbf V _{m} = \mathbf V _{nm} ,
\mathbf f _{n} \mathbf f _{m} = \mathbf f _{nm} ,
$$
$$
\langle a\rangle \mathbf V _{m} = \mathbf V _{m} \langle a ^{m} \rangle ,
\mathbf f _{m} \langle a\rangle = \langle a ^{m} \rangle \mathbf f _{m} ,
$$
$$
\mathbf V _{m} \mathbf f _{n} = \mathbf f _{n} \mathbf V _{m} \textrm{ if } (n,\ m) = 1 ,
$$
$$
\mathbf f _{n} \mathbf V _{n} = 1 + \dots + 1 ( n \textrm{ summands } ) ,
$$
$$
\langle a+b\rangle = \sum _{n=1} ^ \infty \mathbf V _{n} \langle r _{n} ( a,\ b) \rangle \mathbf f _{n} .
$$
Commutative formal groups over $ A $
are classified by certain modules over $ \mathop{\rm Cart}\nolimits (A) $.
In case $ A $
is a $ \mathbf Z _{(p)} $-
algebra, a simpler ring $ \mathop{\rm Cart}\nolimits _{p} (A) $
can be used for this purpose. It consists of all expressions (*) where now the $ i,\ j $
only run over the powers $ p ^{0} ,\ p ^{1} ,\ p ^{2} , . . . $
of the prime $ p $.
The calculation rules are the analogous ones. In case $ k $
is a perfect field of characteristic $ p > 0 $
and $ \sigma $
denotes the Frobenius endomorphism of $ W(k) $(
which in this case is given by $ \sigma ( a _{1} ,\ a _{2} , . . . ) = ( a _{1} ^{p} ,\ a _{2} ^{p} , . . ) $),
then $ \mathop{\rm Cart}\nolimits _{p} (k) $
can be described as the ring of all expressions $$
x _{0} + \sum _{i=1} ^ \infty x _{i} \mathbf V ^{i} +
\sum _{j=1} ^ \infty y _{j} \mathbf f ^{i} ,
$$
in two symbols $ \mathbf f $
and $ \mathbf V $
and with coefficients in $ W _ {p ^ \infty} (k) $,
with the extra condition $ \mathop{\rm lim}\nolimits _ {i \rightarrow \infty} \ y _{i} = 0 $
and the calculation rules $$
\mathbf f x = \sigma (x) \mathbf f ,
\mathbf V x = \sigma ^{-1} (x) \mathbf V ,
$$
$$
\mathbf f \mathbf V = \mathbf V \mathbf f = p .
$$
This ring, and also its subring of all expressions $$
x _{0} + \sum _{i=1} ^ \infty x _{i} \mathbf V ^{i} +
\sum _{j=1} ^ {< \infty} y _{j} \mathbf f ^{j} ,
$$
is known as the Dieudonné ring $ D(k) $
and certain modules (called Dieudonné modules) over it classify unipotent commutative affine group schemes over $ k $,
cf. [a5].
References
[a1] | E. Artin, H. Hasse, "Die beide Ergänzungssätze zum Reciprozitätsgesetz der -ten Potenzreste im Körper der -ten Einheitswurzeln" Abh. Math. Sem. Univ. Hamburg , 6 (1928) pp. 146–162 |
[a2] | G. Whaples, "Generalized local class field theory III: Second form of the existence theorem, structure of analytic groups" Duke Math. J. , 21 (1954) pp. 575–581 MR73645 |
[a3] | M. Hazewinkel, "Twisted Lubin–Tate formal group laws, ramified Witt vectors and (ramified) Artin–Hasse exponentials" Trans. Amer. Math. Soc. , 259 (1980) pp. 47–63 MR0561822 Zbl 0437.13014 |
[a4] | M. Hazewinkel, "Formal group laws and applications" , Acad. Press (1978) MR506881 |
[a5] | M. Demazure, P. Gabriel, "Groupes algébriques" , 1 , North-Holland (1971) MR1611211 MR0302656 MR0284446 Zbl 0223.14009 Zbl 0203.23401 Zbl 0134.16503 |