Difference between revisions of "Hermite polynomials"
(Importing text file) |
(details) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | h0470101.png | ||
+ | $#A+1 = 17 n = 0 | ||
+ | $#C+1 = 17 : ~/encyclopedia/old_files/data/H047/H.0407010 Hermite polynomials, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Chebyshev–Hermite polynomials'' | ''Chebyshev–Hermite polynomials'' | ||
− | Polynomials orthogonal on | + | Polynomials orthogonal on $ ( - \infty , \infty ) $ |
+ | with the weight function $ h ( x) = e ^ {- x ^ {2} } $. | ||
+ | The standardized Hermite polynomials are defined by the [[Rodrigues formula|Rodrigues formula]] | ||
− | + | $$ | |
+ | H _ {n} ( x) = ( - 1 ) ^ {n} e ^ {x ^ {2} } | ||
+ | ( e ^ {- x ^ {2} } ) ^ {( n)} . | ||
+ | $$ | ||
The most commonly used formulas are: | The most commonly used formulas are: | ||
− | + | $$ | |
+ | H _ {n+} 1 ( x) = 2 x H _ {n} ( x) - 2 n H _ {n- 1} ( x) , | ||
+ | $$ | ||
− | + | $$ | |
+ | H _ {n} ^ \prime ( x) = 2 n H _ {n- 1} ( x) , | ||
+ | $$ | ||
− | + | $$ | |
+ | H _ {n} ( x) = \sum _ {k=0} ^ { [ n/2] } | ||
+ | \frac{(- 1) ^ {k} n ! }{k ! ( n - 2 k ) ! } | ||
+ | ( 2 x ) ^ {n-2k} , | ||
+ | $$ | ||
− | + | $$ | |
+ | \mathop{\rm exp} ( 2 x w - w ^ {2} ) = \sum _ {n=0}^ \infty | ||
+ | \frac{H _ {n} ( x) }{n!} | ||
+ | w ^ {n} . | ||
+ | $$ | ||
The first few Hermite polynomials are: | The first few Hermite polynomials are: | ||
− | + | $$ | |
+ | H _ {0} ( x) = 1,\ H _ {1} ( x) = 2x,\ H _ {2} ( x) = 4 x ^ {2} - 2 , | ||
+ | $$ | ||
− | + | $$ | |
+ | H _ {3} ( x) = 8 x ^ {3} - 12 x ,\ H _ {4} ( x) = 16 x ^ {4} - 48 x ^ {2} + 12 , | ||
+ | $$ | ||
− | + | $$ | |
+ | H _ {5} ( x) = 32 x ^ {5} + 160 x ^ {3} + 120 x ,\dots . | ||
+ | $$ | ||
− | The polynomial | + | The polynomial $ H _ {n} ( x) $ |
+ | satisfies the differential equation | ||
− | + | $$ | |
+ | y ^ {\prime\prime} - 2 x y ^ \prime + 2 n y = 0 . | ||
+ | $$ | ||
The orthonormal Hermite polynomials are defined by | The orthonormal Hermite polynomials are defined by | ||
− | + | $$ | |
+ | \widehat{H} _ {n} ( x) = | ||
+ | \frac{H _ {n} ( x) }{\sqrt {n ! 2 ^ {n} \sqrt \pi } } | ||
+ | . | ||
+ | $$ | ||
The Hermite polynomials with leading coefficient one have the form | The Hermite polynomials with leading coefficient one have the form | ||
− | + | $$ | |
+ | \widetilde{H} _ {n} ( x) = | ||
+ | \frac{1}{2 ^ {n} } | ||
+ | H _ {n} ( x) = \ | ||
− | Fourier series in Hermite polynomials in the interior of | + | \frac{(- 1) ^ {n} }{2 ^ {n} } |
+ | e ^ {x ^ {2} } | ||
+ | ( e ^ {- x ^ {2} } ) ^ {(n) }. | ||
+ | $$ | ||
+ | |||
+ | Fourier series in Hermite polynomials in the interior of $ ( - \infty , \infty ) $ | ||
+ | behave analogous to trigonometric Fourier series. | ||
In mathematical statistics and probability theory one uses the Hermite polynomials corresponding to the weight function | In mathematical statistics and probability theory one uses the Hermite polynomials corresponding to the weight function | ||
− | + | $$ | |
+ | h ( x) = \mathop{\rm exp} ( - x ^ {2} / 2 ) . | ||
+ | $$ | ||
− | The definition of Hermite polynomials is encountered in P. Laplace [[#References|[1]]]. A detailed study of them was published by P.L. Chebyshev in 1859 (see [[#References|[2]]]). Later, these polynomials were studied by Ch. Hermite . V.A. Steklov [[#References|[4]]] proved that the set of them is dense in the space of square-summable functions with the weight | + | The definition of Hermite polynomials is encountered in P. Laplace [[#References|[1]]]. A detailed study of them was published by [[Chebyshev, Pafnutii Lvovich|P.L. Chebyshev]] in 1859 (see [[#References|[2]]]). Later, these polynomials were studied by Ch. Hermite . V.A. Steklov [[#References|[4]]] proved that the set of them is dense in the space of square-summable functions with the weight $ h ( x) = \mathop{\rm exp} ( - x ^ {2} ) $ |
+ | on the whole real line. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Laplace, ''Mém. Cl. Sci. Math. Phys. Inst. France'' , '''58''' (1810) pp. 279–347</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.L. Chebyshev, , ''Collected works'' , '''2''' , Moscow-Leningrad (1947) pp. 335–341 (In Russian)</TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> Ch. Hermite, ''C.R. Acad. Sci. Paris'' , '''58''' (1864) pp. 93–100</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> Ch. Hermite, ''C.R. Acad. Sci. Paris'' , '''58''' (1864) pp. 266–273</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Steklov, ''Izv. Akad. Nauk'' , '''10''' (1956) pp. 403–416</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1979) (In Russian)</TD></TR></table> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Laplace, ''Mém. Cl. Sci. Math. Phys. Inst. France'' , '''58''' (1810) pp. 279–347</TD></TR> | |
− | + | <TR><TD valign="top">[2]</TD> <TD valign="top"> P.L. Chebyshev, , ''Collected works'' , '''2''' , Moscow-Leningrad (1947) pp. 335–341 (In Russian)</TD></TR> | |
+ | <TR><TD valign="top">[3a]</TD> <TD valign="top"> Ch. Hermite, ''C.R. Acad. Sci. Paris'' , '''58''' (1864) pp. 93–100</TD></TR> | ||
+ | <TR><TD valign="top">[3b]</TD> <TD valign="top"> Ch. Hermite, ''C.R. Acad. Sci. Paris'' , '''58''' (1864) pp. 266–273</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Steklov, ''Izv. Akad. Nauk'' , '''10''' (1956) pp. 403–416</TD></TR> | ||
+ | <TR><TD valign="top">[5]</TD> <TD valign="top"> P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1979) (In Russian)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
The result by Steklov mentioned in the last sentence of the main article goes back at least to H. Weyl (1908), cf. the references in [[#References|[a3]]], Sect. 5.7. | The result by Steklov mentioned in the last sentence of the main article goes back at least to H. Weyl (1908), cf. the references in [[#References|[a3]]], Sect. 5.7. | ||
− | One possible way to prove the Plancherel formula for the [[ | + | One possible way to prove the Plancherel formula for the [[Fourier transform]] is by use of Hermite polynomials, cf. [[#References|[a4]]]. Hermite polynomials occur in solutions of the heat and Schrödinger equations and in the so-called heat polynomials, cf. [[#References|[a1]]]. A canonical orthonormal basis of the representation space for the Schrödinger representation of the Heisenberg group is given in terms of Hermite polynomials, cf. [[#References|[a2]]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Miller jr., "Symmetry and separation of variables" , Addison-Wesley (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Schempp, "Harmonic analysis on the Heisenberg nilpotent Lie group" , Longman (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Miller jr., "Symmetry and separation of variables" , Addison-Wesley (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Schempp, "Harmonic analysis on the Heisenberg nilpotent Lie group" , Longman (1986)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)</TD></TR></table> |
Latest revision as of 07:13, 20 April 2024
Chebyshev–Hermite polynomials
Polynomials orthogonal on $ ( - \infty , \infty ) $ with the weight function $ h ( x) = e ^ {- x ^ {2} } $. The standardized Hermite polynomials are defined by the Rodrigues formula
$$ H _ {n} ( x) = ( - 1 ) ^ {n} e ^ {x ^ {2} } ( e ^ {- x ^ {2} } ) ^ {( n)} . $$
The most commonly used formulas are:
$$ H _ {n+} 1 ( x) = 2 x H _ {n} ( x) - 2 n H _ {n- 1} ( x) , $$
$$ H _ {n} ^ \prime ( x) = 2 n H _ {n- 1} ( x) , $$
$$ H _ {n} ( x) = \sum _ {k=0} ^ { [ n/2] } \frac{(- 1) ^ {k} n ! }{k ! ( n - 2 k ) ! } ( 2 x ) ^ {n-2k} , $$
$$ \mathop{\rm exp} ( 2 x w - w ^ {2} ) = \sum _ {n=0}^ \infty \frac{H _ {n} ( x) }{n!} w ^ {n} . $$
The first few Hermite polynomials are:
$$ H _ {0} ( x) = 1,\ H _ {1} ( x) = 2x,\ H _ {2} ( x) = 4 x ^ {2} - 2 , $$
$$ H _ {3} ( x) = 8 x ^ {3} - 12 x ,\ H _ {4} ( x) = 16 x ^ {4} - 48 x ^ {2} + 12 , $$
$$ H _ {5} ( x) = 32 x ^ {5} + 160 x ^ {3} + 120 x ,\dots . $$
The polynomial $ H _ {n} ( x) $ satisfies the differential equation
$$ y ^ {\prime\prime} - 2 x y ^ \prime + 2 n y = 0 . $$
The orthonormal Hermite polynomials are defined by
$$ \widehat{H} _ {n} ( x) = \frac{H _ {n} ( x) }{\sqrt {n ! 2 ^ {n} \sqrt \pi } } . $$
The Hermite polynomials with leading coefficient one have the form
$$ \widetilde{H} _ {n} ( x) = \frac{1}{2 ^ {n} } H _ {n} ( x) = \ \frac{(- 1) ^ {n} }{2 ^ {n} } e ^ {x ^ {2} } ( e ^ {- x ^ {2} } ) ^ {(n) }. $$
Fourier series in Hermite polynomials in the interior of $ ( - \infty , \infty ) $ behave analogous to trigonometric Fourier series.
In mathematical statistics and probability theory one uses the Hermite polynomials corresponding to the weight function
$$ h ( x) = \mathop{\rm exp} ( - x ^ {2} / 2 ) . $$
The definition of Hermite polynomials is encountered in P. Laplace [1]. A detailed study of them was published by P.L. Chebyshev in 1859 (see [2]). Later, these polynomials were studied by Ch. Hermite . V.A. Steklov [4] proved that the set of them is dense in the space of square-summable functions with the weight $ h ( x) = \mathop{\rm exp} ( - x ^ {2} ) $ on the whole real line.
References
[1] | P.S. Laplace, Mém. Cl. Sci. Math. Phys. Inst. France , 58 (1810) pp. 279–347 |
[2] | P.L. Chebyshev, , Collected works , 2 , Moscow-Leningrad (1947) pp. 335–341 (In Russian) |
[3a] | Ch. Hermite, C.R. Acad. Sci. Paris , 58 (1864) pp. 93–100 |
[3b] | Ch. Hermite, C.R. Acad. Sci. Paris , 58 (1864) pp. 266–273 |
[4] | V.A. Steklov, Izv. Akad. Nauk , 10 (1956) pp. 403–416 |
[5] | P.K. Suetin, "Classical orthogonal polynomials" , Moscow (1979) (In Russian) |
Comments
The result by Steklov mentioned in the last sentence of the main article goes back at least to H. Weyl (1908), cf. the references in [a3], Sect. 5.7.
One possible way to prove the Plancherel formula for the Fourier transform is by use of Hermite polynomials, cf. [a4]. Hermite polynomials occur in solutions of the heat and Schrödinger equations and in the so-called heat polynomials, cf. [a1]. A canonical orthonormal basis of the representation space for the Schrödinger representation of the Heisenberg group is given in terms of Hermite polynomials, cf. [a2].
References
[a1] | W. Miller jr., "Symmetry and separation of variables" , Addison-Wesley (1977) |
[a2] | W. Schempp, "Harmonic analysis on the Heisenberg nilpotent Lie group" , Longman (1986) |
[a3] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
[a4] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
Hermite polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hermite_polynomials&oldid=14720