Difference between revisions of "Density theorems"
(Importing text file) |
m (→References: latexify) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | The general name for theorems that give upper bounds for the number | + | {{TEX|done}} |
+ | The general name for theorems that give upper bounds for the number $N(\sigma,T,\chi)$ of zeros $\rho=\beta+i\gamma$ of Dirichlet $L$-functions | ||
− | + | $$L(s,\chi)=\sum_{n=1}^\infty\frac{\chi(n,k)}{n^s},$$ | |
− | where | + | where $s=\sigma+it$ and $\chi(n,k)$ is a character modulo $k$, in the rectangle $1/2<\sigma\leq\beta<1$, $|\gamma|\leq T$. In the case $k=1$, one gets density theorems for the number of zeros of the Riemann zeta-function |
− | + | $$\zeta(s)=\sum_{n=1}^\infty\frac{1}{n^s}.$$ | |
− | The density theorems for | + | The density theorems for $L$-functions with $k\neq1$ are more complicated than those for the Riemann zeta-function. As $T$ and $k$ increase, one obtains bounds depending on these parameters. The parameter $k$ plays a decisive part in applications. |
− | The significance of density theorems is evident from the relations enabling one to estimate the residual term in the formula for the number of prime numbers | + | The significance of density theorems is evident from the relations enabling one to estimate the residual term in the formula for the number of prime numbers $p$ belonging to an arithmetic progression $km+l$, $1\leq l\leq k$, $(l,k)=1$, $m=0,1,\ldots,$ and not exceeding $x$, as a function of $N(\sigma,T,\chi)$. |
− | Since | + | Since $N(\sigma,T,\chi)$ does not increase with $\sigma$ and $N(1,T,\chi)=0$, the purpose of density theorems is to obtain bounds that converge most rapidly to zero as $\sigma\to1$. In turn, these bounds are substantially supplemented by results on the absence of zeros for Dirichlet $L$-functions in neighbourhoods of the straight line $\sigma=1$, obtained using the Hardy–Littlewood–Vinogradov circle method. In this way it has been possible to obtain strong bounds for the amount of even numbers $n\leq x$ that cannot be represented as the sum of two prime numbers. |
− | Yu.V. Linnik obtained the first density theorems providing bounds for | + | Yu.V. Linnik obtained the first density theorems providing bounds for $N(\sigma,T,\chi)$ for an individual character $\chi$ and averaged bounds over all characters modulo $a$, given $k$. Subsequent substantial improvements of density theorems were obtained by A.I. Vinogradov and E. Bombieri, who used bounds on $N(\sigma,T,\chi)$ averaged over all moduli $k\leq Q$ and over all primitive characters modulo $a$, given $k$, in proving a theorem on the average distribution of prime numbers in arithmetic progressions (for $Q=\sqrt x/(\ln x)^c$). The Vinogradov–Bombieri theorem enables one to replace the generalized Riemann hypothesis in various classical problems in additive number theory. There are also various other improvements of density theorems. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Davenport, "Multiplicative number theory" , Springer (1980)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.F. Lavrik, "A survey of Linnik's large sieve and the density theory of zeros of | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Davenport, "Multiplicative number theory" , Springer (1980)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.F. Lavrik, "A survey of Linnik's large sieve and the density theory of zeros of L-functions" ''Russian Math. Surveys'' , '''35''' : 2 (1980) pp. 63–76 ''Uspekhi Mat. Nauk'' , '''35''' : 2 (1980) pp. 55–65</TD></TR></table> |
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 27: | Line 26: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ivic, "The Riemann zeta-function" , Wiley (1985)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Ivic, "The Riemann zeta-function" , Wiley (1985)</TD></TR></table> | ||
+ | |||
+ | [[Category:Number theory]] |
Latest revision as of 11:35, 26 March 2023
The general name for theorems that give upper bounds for the number $N(\sigma,T,\chi)$ of zeros $\rho=\beta+i\gamma$ of Dirichlet $L$-functions
$$L(s,\chi)=\sum_{n=1}^\infty\frac{\chi(n,k)}{n^s},$$
where $s=\sigma+it$ and $\chi(n,k)$ is a character modulo $k$, in the rectangle $1/2<\sigma\leq\beta<1$, $|\gamma|\leq T$. In the case $k=1$, one gets density theorems for the number of zeros of the Riemann zeta-function
$$\zeta(s)=\sum_{n=1}^\infty\frac{1}{n^s}.$$
The density theorems for $L$-functions with $k\neq1$ are more complicated than those for the Riemann zeta-function. As $T$ and $k$ increase, one obtains bounds depending on these parameters. The parameter $k$ plays a decisive part in applications.
The significance of density theorems is evident from the relations enabling one to estimate the residual term in the formula for the number of prime numbers $p$ belonging to an arithmetic progression $km+l$, $1\leq l\leq k$, $(l,k)=1$, $m=0,1,\ldots,$ and not exceeding $x$, as a function of $N(\sigma,T,\chi)$.
Since $N(\sigma,T,\chi)$ does not increase with $\sigma$ and $N(1,T,\chi)=0$, the purpose of density theorems is to obtain bounds that converge most rapidly to zero as $\sigma\to1$. In turn, these bounds are substantially supplemented by results on the absence of zeros for Dirichlet $L$-functions in neighbourhoods of the straight line $\sigma=1$, obtained using the Hardy–Littlewood–Vinogradov circle method. In this way it has been possible to obtain strong bounds for the amount of even numbers $n\leq x$ that cannot be represented as the sum of two prime numbers.
Yu.V. Linnik obtained the first density theorems providing bounds for $N(\sigma,T,\chi)$ for an individual character $\chi$ and averaged bounds over all characters modulo $a$, given $k$. Subsequent substantial improvements of density theorems were obtained by A.I. Vinogradov and E. Bombieri, who used bounds on $N(\sigma,T,\chi)$ averaged over all moduli $k\leq Q$ and over all primitive characters modulo $a$, given $k$, in proving a theorem on the average distribution of prime numbers in arithmetic progressions (for $Q=\sqrt x/(\ln x)^c$). The Vinogradov–Bombieri theorem enables one to replace the generalized Riemann hypothesis in various classical problems in additive number theory. There are also various other improvements of density theorems.
References
[1] | K. Prachar, "Primzahlverteilung" , Springer (1957) |
[2] | H. Davenport, "Multiplicative number theory" , Springer (1980) |
[3] | A.F. Lavrik, "A survey of Linnik's large sieve and the density theory of zeros of L-functions" Russian Math. Surveys , 35 : 2 (1980) pp. 63–76 Uspekhi Mat. Nauk , 35 : 2 (1980) pp. 55–65 |
Comments
For extra references see Density method. Cf. also Distribution of prime numbers.
For the Vinogradov–Bombieri theorem see Density hypothesis.
References
[a1] | A. Ivic, "The Riemann zeta-function" , Wiley (1985) |
Density theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Density_theorems&oldid=14657