Difference between revisions of "Bivector space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0166101.png | ||
+ | $#A+1 = 55 n = 0 | ||
+ | $#C+1 = 55 : ~/encyclopedia/old_files/data/B016/B.0106610 Bivector space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Centro-affine space|centro-affine space]] $ E _ {N} $( | |
+ | where $ N = n(n - 1)/2 $), | ||
+ | which may be assigned to each point of a space $ A _ {n} $ | ||
+ | with an affine connection (in particular, to a Riemannian space $ V _ {n} $). | ||
+ | Consider all tensors with even covariant and contravariant valencies at a point of the space $ A _ {n} $( | ||
+ | or $ V _ {n} $); | ||
+ | the covariant and contravariant indices are subdivided into different pairs, for each one of which the tensor is skew-symmetric. Tensors with these two properties are called bitensors. If each skew-symmetric pair is regarded as a collective index, the number of new indices will be $ N = n(n - 1)/2 $. | ||
+ | The simplest bitensor is the [[Bivector|bivector]] | ||
− | + | $$ | |
+ | v _ {\alpha \beta } = - v _ {\beta \alpha } \rightarrow v _ {a} ,\ \ | ||
+ | \alpha , \beta =1 \dots n; \ a = 1 \dots N . | ||
+ | $$ | ||
− | + | If, at a point $ P $ | |
+ | of $ A _ {n} $, | ||
− | + | $$ | |
+ | A _ \beta ^ \alpha = \ | ||
+ | \left ( | ||
− | + | \frac{\partial \overline{x}\; ^ \alpha }{\partial x ^ \beta } | |
− | + | \right ) _ {p} ,\ \ | |
+ | A _ {b} ^ {a} = \ | ||
+ | 2A _ \gamma ^ {[ \alpha } | ||
+ | A _ \delta ^ { {}\beta ] } = \ | ||
+ | A _ {[ \gamma{} } ^ {[ \alpha{} } | ||
+ | A _ { {}\delta ] } ^ { {}\beta ] } , | ||
+ | $$ | ||
− | + | $$ | |
+ | v ^ {a} = v ^ {\alpha \beta } ,\ v ^ {b} = v ^ {\gamma \delta } , | ||
+ | $$ | ||
− | + | then $ \overline{v}\; ^ {a} = A _ {b} ^ {a} v ^ {b} $, | |
+ | and the set of bivectors assigned to $ A _ {n} $( | ||
+ | or $ V _ {n} $) | ||
+ | at a given point defines a vector space of dimension $ N $ | ||
+ | such that the components satisfy the conditions | ||
− | + | $$ | |
+ | \overline{v}\; ^ {b} = \ | ||
+ | A _ {a} ^ {b} v ^ {a} ,\ \ | ||
+ | v ^ {a} = \ | ||
+ | \overline{A}\; _ {b} ^ {a} | ||
+ | \overline{v}\; ^ {b} | ||
+ | $$ | ||
− | + | $$ | |
+ | | A _ {b} ^ {a} | \neq 0,\ A _ {b} ^ {a} \overline{A}\; _ {c} ^ {b} = \delta _ {c} ^ {a} | ||
+ | $$ | ||
− | + | i.e. this set defines the centro-affine space $ E _ {N} $, | |
+ | called the bivector space at the given point. In $ V _ {n} $ | ||
+ | the bivector space may be metrized with the aid of the metric tensor | ||
− | == | + | $$ |
− | + | g _ {ab} = \ | |
+ | g _ {\alpha \beta \gamma \delta } = ^ { {roman } def } \ | ||
+ | g _ {\alpha \gamma } g _ {\beta \delta } - | ||
+ | g _ {\alpha \delta } g _ {\beta \gamma } , | ||
+ | $$ | ||
+ | |||
+ | after which $ E _ {N} $ | ||
+ | becomes a metric space $ R _ {N} $. | ||
+ | |||
+ | Bivector spaces are used in Riemannian geometry and in the general theory of relativity. The bivector space $ R _ {N} $ | ||
+ | is constructed at a given point of the space $ V _ {n} $, | ||
+ | and different representations of the curvature tensor with components $ R _ {\alpha \beta \gamma \delta } $, | ||
+ | $ R _ {\gamma \delta } ^ {\alpha \beta } $, | ||
+ | $ R _ {\alpha \beta } ^ {\gamma \delta } $ | ||
+ | and the second-valency bitensors with components $ R _ {ab} $, | ||
+ | $ R _ {b} ^ {a} $, | ||
+ | $ R _ {a} ^ {b} $ | ||
+ | are associated, respectively. The study of the algebraic structure of the curvature tensor may then be reduced to the study of the pencil of quadratic forms $ R _ {ab} - \lambda g _ {ab} $, | ||
+ | the second one of which is non-degenerate ( $ | g _ {ab} | \neq 0 $). | ||
+ | The study of elementary divisors of this pair results in a classification of the spaces $ V _ {n} $. | ||
+ | If $ n = 4 $( | ||
+ | $ N = 6 $) | ||
+ | and if the form $ g _ {\alpha \beta } $ | ||
+ | has signature $ (- - - +) $, | ||
+ | then it can be shown that only three types of Einstein spaces exist. | ||
+ | A bivector may be assigned to each rotation in $ V _ {n} $; | ||
+ | this means that in $ R _ {N} $ | ||
+ | there corresponds a vector, which is convenient for the study of infinitesimal transformations. Essentially, a bivector space is identical with a [[Biplanar space|biplanar space]] [[#References|[2]]]. | ||
+ | ====References==== | ||
+ | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Z. Petrov, "New methods in general relativity theory" , Moscow (1966) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.P. Norden, "On complex representation of tensors of a biplanar space" , ''8'' ''Kazan. Gos. Univ. Uchen. Zap.'' , '''114''' (1954) pp. 45–53 (In Russian) {{MR|76400}} {{ZBL|}} </TD></TR></table> | ||
====Comments==== | ====Comments==== | ||
− | Consider a bivector as represented by an ordered pair of vectors | + | Consider a bivector as represented by an ordered pair of vectors $ ( \mathbf u , \mathbf v ) $ |
+ | as in [[#References|[a1]]], [[#References|[a4]]] or the article [[Bivector|bivector]]. The Plücker coordinates of $ ( \mathbf u , \mathbf v ) $, | ||
+ | $ p ^ {ij} = u ^ {i} v ^ {j} - u ^ {j} v ^ {i} $, | ||
+ | then constitute a bivector as in the article above. Let $ \overline{\mathbf u}\; = A \mathbf u $, | ||
+ | $ \overline{\mathbf v}\; = A \mathbf v $, | ||
+ | i.e. $ \overline{u}\; ^ {i} = A _ {j} ^ {i} u ^ {j} $ | ||
+ | and similarly for $ \mathbf v $. | ||
+ | Then the $ p ^ {ij} $ | ||
+ | transform as $ p ^ {ij} = 2A _ {k} ^ {[i} A _ {l} ^ {j]} p ^ {kl} $. | ||
+ | Whence the formulas above. Here the square brackets in $ A _ {k} ^ {[i} A _ {l} ^ {j]} $ | ||
+ | are a notation signifying taking an alternating average. Thus $ A _ {k} ^ {[1} A _ {l} ^ {2]} = (A _ {k} ^ {1} A _ {l} ^ {2} - A _ {k} ^ {2} A _ {l} ^ {1} )/2 $. | ||
+ | If certain indices are to be singled out, i.e. exempt from this averaging process, this is indicated by $ | {} | $. | ||
+ | Thus $ A _ {m} ^ {[ij | k | l] } = (A _ {m} ^ {ijkl} - A _ {m} ^ {jikl} - A _ {m} ^ {ilkj} - A _ {m} ^ {ljki} + A _ {m} ^ {jlki} + A _ {m} ^ {likj} )/6 $, | ||
+ | and $ g _ {ab} = 2g _ {\alpha [ \gamma{} } g _ { {}| \beta | \delta ] } $, | ||
+ | cf. above. This is a notation introduced by R. Bach [[#References|[a5]]]. Cf. also [[Alternation|Alternation]]. | ||
− | In more modern terms what is described here is the bundle of bivectors over | + | In more modern terms what is described here is the bundle of bivectors over $ A _ {n} $. |
A centro-affine space is an affine space with a distinguished point, i.e. practically a vector space. It is not a term which is still greatly used. | A centro-affine space is an affine space with a distinguished point, i.e. practically a vector space. It is not a term which is still greatly used. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Cartan, "Geometry of Riemannian spaces. (With notes and appendices by R. Hermann)" , Math. Sci. Press (1963) (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Gołab, "Tensor calculus" , Elsevier (1974) (Translated from Polish) {{MR|}} {{ZBL|0277.53008}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) pp. 11ff (Translated from German) {{MR|0066025}} {{ZBL|0057.37803}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Bach, "Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungsbegriffs" ''Math. Zeitschr.'' , '''9''' (1921) pp. 110–135 {{MR|1544454}} {{ZBL|}} </TD></TR></table> |
Latest revision as of 10:59, 29 May 2020
A centro-affine space $ E _ {N} $(
where $ N = n(n - 1)/2 $),
which may be assigned to each point of a space $ A _ {n} $
with an affine connection (in particular, to a Riemannian space $ V _ {n} $).
Consider all tensors with even covariant and contravariant valencies at a point of the space $ A _ {n} $(
or $ V _ {n} $);
the covariant and contravariant indices are subdivided into different pairs, for each one of which the tensor is skew-symmetric. Tensors with these two properties are called bitensors. If each skew-symmetric pair is regarded as a collective index, the number of new indices will be $ N = n(n - 1)/2 $.
The simplest bitensor is the bivector
$$ v _ {\alpha \beta } = - v _ {\beta \alpha } \rightarrow v _ {a} ,\ \ \alpha , \beta =1 \dots n; \ a = 1 \dots N . $$
If, at a point $ P $ of $ A _ {n} $,
$$ A _ \beta ^ \alpha = \ \left ( \frac{\partial \overline{x}\; ^ \alpha }{\partial x ^ \beta } \right ) _ {p} ,\ \ A _ {b} ^ {a} = \ 2A _ \gamma ^ {[ \alpha } A _ \delta ^ { {}\beta ] } = \ A _ {[ \gamma{} } ^ {[ \alpha{} } A _ { {}\delta ] } ^ { {}\beta ] } , $$
$$ v ^ {a} = v ^ {\alpha \beta } ,\ v ^ {b} = v ^ {\gamma \delta } , $$
then $ \overline{v}\; ^ {a} = A _ {b} ^ {a} v ^ {b} $, and the set of bivectors assigned to $ A _ {n} $( or $ V _ {n} $) at a given point defines a vector space of dimension $ N $ such that the components satisfy the conditions
$$ \overline{v}\; ^ {b} = \ A _ {a} ^ {b} v ^ {a} ,\ \ v ^ {a} = \ \overline{A}\; _ {b} ^ {a} \overline{v}\; ^ {b} $$
$$ | A _ {b} ^ {a} | \neq 0,\ A _ {b} ^ {a} \overline{A}\; _ {c} ^ {b} = \delta _ {c} ^ {a} $$
i.e. this set defines the centro-affine space $ E _ {N} $, called the bivector space at the given point. In $ V _ {n} $ the bivector space may be metrized with the aid of the metric tensor
$$ g _ {ab} = \ g _ {\alpha \beta \gamma \delta } = ^ { {roman } def } \ g _ {\alpha \gamma } g _ {\beta \delta } - g _ {\alpha \delta } g _ {\beta \gamma } , $$
after which $ E _ {N} $ becomes a metric space $ R _ {N} $.
Bivector spaces are used in Riemannian geometry and in the general theory of relativity. The bivector space $ R _ {N} $ is constructed at a given point of the space $ V _ {n} $, and different representations of the curvature tensor with components $ R _ {\alpha \beta \gamma \delta } $, $ R _ {\gamma \delta } ^ {\alpha \beta } $, $ R _ {\alpha \beta } ^ {\gamma \delta } $ and the second-valency bitensors with components $ R _ {ab} $, $ R _ {b} ^ {a} $, $ R _ {a} ^ {b} $ are associated, respectively. The study of the algebraic structure of the curvature tensor may then be reduced to the study of the pencil of quadratic forms $ R _ {ab} - \lambda g _ {ab} $, the second one of which is non-degenerate ( $ | g _ {ab} | \neq 0 $). The study of elementary divisors of this pair results in a classification of the spaces $ V _ {n} $. If $ n = 4 $( $ N = 6 $) and if the form $ g _ {\alpha \beta } $ has signature $ (- - - +) $, then it can be shown that only three types of Einstein spaces exist.
A bivector may be assigned to each rotation in $ V _ {n} $; this means that in $ R _ {N} $ there corresponds a vector, which is convenient for the study of infinitesimal transformations. Essentially, a bivector space is identical with a biplanar space [2].
References
[1] | A.Z. Petrov, "New methods in general relativity theory" , Moscow (1966) (In Russian) |
[2] | A.P. Norden, "On complex representation of tensors of a biplanar space" , 8 Kazan. Gos. Univ. Uchen. Zap. , 114 (1954) pp. 45–53 (In Russian) MR76400 |
Comments
Consider a bivector as represented by an ordered pair of vectors $ ( \mathbf u , \mathbf v ) $ as in [a1], [a4] or the article bivector. The Plücker coordinates of $ ( \mathbf u , \mathbf v ) $, $ p ^ {ij} = u ^ {i} v ^ {j} - u ^ {j} v ^ {i} $, then constitute a bivector as in the article above. Let $ \overline{\mathbf u}\; = A \mathbf u $, $ \overline{\mathbf v}\; = A \mathbf v $, i.e. $ \overline{u}\; ^ {i} = A _ {j} ^ {i} u ^ {j} $ and similarly for $ \mathbf v $. Then the $ p ^ {ij} $ transform as $ p ^ {ij} = 2A _ {k} ^ {[i} A _ {l} ^ {j]} p ^ {kl} $. Whence the formulas above. Here the square brackets in $ A _ {k} ^ {[i} A _ {l} ^ {j]} $ are a notation signifying taking an alternating average. Thus $ A _ {k} ^ {[1} A _ {l} ^ {2]} = (A _ {k} ^ {1} A _ {l} ^ {2} - A _ {k} ^ {2} A _ {l} ^ {1} )/2 $. If certain indices are to be singled out, i.e. exempt from this averaging process, this is indicated by $ | {} | $. Thus $ A _ {m} ^ {[ij | k | l] } = (A _ {m} ^ {ijkl} - A _ {m} ^ {jikl} - A _ {m} ^ {ilkj} - A _ {m} ^ {ljki} + A _ {m} ^ {jlki} + A _ {m} ^ {likj} )/6 $, and $ g _ {ab} = 2g _ {\alpha [ \gamma{} } g _ { {}| \beta | \delta ] } $, cf. above. This is a notation introduced by R. Bach [a5]. Cf. also Alternation.
In more modern terms what is described here is the bundle of bivectors over $ A _ {n} $.
A centro-affine space is an affine space with a distinguished point, i.e. practically a vector space. It is not a term which is still greatly used.
References
[a1] | E. Cartan, "Geometry of Riemannian spaces. (With notes and appendices by R. Hermann)" , Math. Sci. Press (1963) (Translated from French) |
[a2] | S. Gołab, "Tensor calculus" , Elsevier (1974) (Translated from Polish) Zbl 0277.53008 |
[a3] | P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
[a4] | J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) pp. 11ff (Translated from German) MR0066025 Zbl 0057.37803 |
[a5] | R. Bach, "Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungsbegriffs" Math. Zeitschr. , 9 (1921) pp. 110–135 MR1544454 |
Bivector space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bivector_space&oldid=14487