Difference between revisions of "Riemannian metric"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | r0821801.png | ||
| + | $#A+1 = 17 n = 0 | ||
| + | $#C+1 = 17 : ~/encyclopedia/old_files/data/R082/R.0802180 Riemannian metric | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | The metric of a space given by a positive-definite [[Quadratic form|quadratic form]]. If a local coordinate system $ ( x ^ {1} \dots x ^ {n} ) $ | |
| + | is introduced for the space $ V _ {n} $ | ||
| + | and if at each point $ X( x ^ {1} \dots x ^ {n} ) \in V _ {n} $ | ||
| + | functions $ g _ {ij} ( X) $, | ||
| + | $ i, j = 1 \dots n $, | ||
| + | $ \mathop{\rm det} ( g _ {ij} ) > 0 $, | ||
| + | $ g _ {ij} ( X) = g _ {ji} ( X) $, | ||
| + | are defined which are the components of a covariant symmetric tensor of the second valency, then this tensor is called the fundamental metric tensor of $ V _ {n} $. | ||
| + | The length $ ds $ | ||
| + | of the covariant vector $ ( dx ^ {1} \dots dx ^ {n} ) $ | ||
| + | is expressed using the fundamental tensor: | ||
| − | + | $$ | |
| + | ds ^ {2} = g _ {ij} ( X) dx ^ {i} dx ^ {j} ; | ||
| + | $$ | ||
| − | There are generalizations of the concept of a Riemannian metric. Thus, a pseudo-Riemannian metric is defined with the aid of a non-definite non-degenerate quadratic form (see [[Pseudo-Riemannian space|Pseudo-Riemannian space]] and [[Relativity theory|Relativity theory]]). A degenerate Riemannian metric, that is, a metric form defined with the aid of functions | + | the form $ g _ {ij} dx ^ {i} dx ^ {j} $ |
| + | is a positive-definite quadratic form. The metric of $ V _ {n} $ | ||
| + | determined using the form $ ds ^ {2} $ | ||
| + | is called Riemannian, and a space with a given Riemannian metric introduced into it is called a [[Riemannian space|Riemannian space]]. The specification of a Riemannian metric on a differentiable manifold means the specification of a Euclidean structure on the tangent spaces of this manifold depending on the points in a differentiable way. | ||
| + | |||
| + | A Riemannian metric is a generalization of the [[First fundamental form|first fundamental form]] of a surface in three-dimensional Euclidean space — of the internal metric of the surface. The geometry of the space $ V _ {n} $ | ||
| + | based on a definite Riemannian metric is called a [[Riemannian geometry|Riemannian geometry]]. | ||
| + | |||
| + | There are generalizations of the concept of a Riemannian metric. Thus, a pseudo-Riemannian metric is defined with the aid of a non-definite non-degenerate quadratic form (see [[Pseudo-Riemannian space|Pseudo-Riemannian space]] and [[Relativity theory|Relativity theory]]). A degenerate Riemannian metric, that is, a metric form defined with the aid of functions $ g _ {ij} ( X) $ | ||
| + | for which $ \mathop{\rm det} ( g _ {ij} ) = 0 $, | ||
| + | defines a [[Semi-Riemannian space|semi-Riemannian space]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Riemann, "Ueber die Hypothesen, welche der Geometrie zuGrunde liegen" , ''Das Kontinuum und andere Monographien'' , Chelsea, reprint (1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> B. Riemann, "Ueber die Hypothesen, welche der Geometrie zuGrunde liegen" , ''Das Kontinuum und andere Monographien'' , Chelsea, reprint (1973)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Latest revision as of 08:11, 6 June 2020
The metric of a space given by a positive-definite quadratic form. If a local coordinate system $ ( x ^ {1} \dots x ^ {n} ) $
is introduced for the space $ V _ {n} $
and if at each point $ X( x ^ {1} \dots x ^ {n} ) \in V _ {n} $
functions $ g _ {ij} ( X) $,
$ i, j = 1 \dots n $,
$ \mathop{\rm det} ( g _ {ij} ) > 0 $,
$ g _ {ij} ( X) = g _ {ji} ( X) $,
are defined which are the components of a covariant symmetric tensor of the second valency, then this tensor is called the fundamental metric tensor of $ V _ {n} $.
The length $ ds $
of the covariant vector $ ( dx ^ {1} \dots dx ^ {n} ) $
is expressed using the fundamental tensor:
$$ ds ^ {2} = g _ {ij} ( X) dx ^ {i} dx ^ {j} ; $$
the form $ g _ {ij} dx ^ {i} dx ^ {j} $ is a positive-definite quadratic form. The metric of $ V _ {n} $ determined using the form $ ds ^ {2} $ is called Riemannian, and a space with a given Riemannian metric introduced into it is called a Riemannian space. The specification of a Riemannian metric on a differentiable manifold means the specification of a Euclidean structure on the tangent spaces of this manifold depending on the points in a differentiable way.
A Riemannian metric is a generalization of the first fundamental form of a surface in three-dimensional Euclidean space — of the internal metric of the surface. The geometry of the space $ V _ {n} $ based on a definite Riemannian metric is called a Riemannian geometry.
There are generalizations of the concept of a Riemannian metric. Thus, a pseudo-Riemannian metric is defined with the aid of a non-definite non-degenerate quadratic form (see Pseudo-Riemannian space and Relativity theory). A degenerate Riemannian metric, that is, a metric form defined with the aid of functions $ g _ {ij} ( X) $ for which $ \mathop{\rm det} ( g _ {ij} ) = 0 $, defines a semi-Riemannian space.
References
| [1] | L.P. Eisenhart, "Riemannian geometry" , Princeton Univ. Press (1949) |
| [2] | P.K. [P.K. Rashevskii] Rashewski, "Riemannsche Geometrie und Tensoranalyse" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian) |
| [3] | B. Riemann, "Ueber die Hypothesen, welche der Geometrie zuGrunde liegen" , Das Kontinuum und andere Monographien , Chelsea, reprint (1973) |
Comments
The adjective "semi-Riemannian" is also used for indefinite metrics which are non-degenerate everywhere, cf. [a1]. For additional references see also Riemann tensor.
References
| [a1] | B. O'Neill, "Elementary differential geometry" , Acad. Press (1966) |
Riemannian metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemannian_metric&oldid=14477