Namespaces
Variants
Actions

Difference between revisions of "Polar"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The polar of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734001.png" /> with respect to a non-degenerate conic is the line containing all points harmonically conjugate to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734002.png" /> with respect to the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734003.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734004.png" /> of intersection of the conic with secants through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734005.png" /> (cf. [[Cross ratio|Cross ratio]]). The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734006.png" /> is called the [[Pole|pole]]. If the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734007.png" /> lies outside the conic, then the polar passes through the points of contact of the two tangent lines that can be drawn through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734008.png" /> (see Fig. a). If the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p0734009.png" /> lies on the curve, then the polar is the tangent to the curve at this point. If the polar of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340010.png" /> passes through a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340011.png" />, then the polar of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340012.png" /> passes through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340013.png" /> (see Fig. b).
+
<!--
 +
p0734001.png
 +
$#A+1 = 58 n = 0
 +
$#C+1 = 58 : ~/encyclopedia/old_files/data/P073/P.0703400 Polar
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
==Polar of a point with respect to a conic==
 +
The polar of a point  $  P $
 +
with respect to a non-degenerate conic is the line containing all points harmonically conjugate to $  P $
 +
with respect to the points $  M _ {1} $
 +
and $  M _ {2} $
 +
of intersection of the conic with secants through $  P $(
 +
cf. [[Cross ratio|Cross ratio]]). The point $  P $
 +
is called the [[Pole|pole]]. If the point $  P $
 +
lies outside the conic, then the polar passes through the points of contact of the two tangent lines that can be drawn through $  P $(
 +
see Fig. a). If the point $  P $
 +
lies on the curve, then the polar is the tangent to the curve at this point. If the polar of the point $  P $
 +
passes through a point $  Q $,  
 +
then the polar of $  Q $
 +
passes through $  P $(
 +
see Fig. b).
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p073400a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p073400a.gif" />
Line 9: Line 35:
 
Figure: p073400b
 
Figure: p073400b
  
Every non-degenerate conic determines a bijection between the set of points of the projective plane and the set of its straight lines, which is a [[Polarity|polarity]] (a polar transformation). Figures that correspond under this transformation are called mutually polar. A figure coinciding with its polar figure is called autopolar, or self-polar (see, for example, the self-polar triangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340014.png" /> in Fig. b).
+
Every non-degenerate conic determines a bijection between the set of points of the projective plane and the set of its straight lines, which is a [[Polarity|polarity]] (a polar transformation). Figures that correspond under this transformation are called mutually polar. A figure coinciding with its polar figure is called autopolar, or self-polar (see, for example, the self-polar triangle $  PQR $
 +
in Fig. b).
  
 
Analogously one defines the polar (polar plane) of a point with respect to a non-degenerate surface of the second order.
 
Analogously one defines the polar (polar plane) of a point with respect to a non-degenerate surface of the second order.
  
The concept of a polar relative to a conic can be generalized to curves of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340015.png" />. Here, a given point of the plane is put into correspondence with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340016.png" /> polars with respect to the curve. The first of these polars is a curve of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340017.png" />, the second, which is the polar of the given point relative to the first polar, has order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340018.png" />, etc., and, finally, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340019.png" />-st polar is a straight line.
+
The concept of a polar relative to a conic can be generalized to curves of order $  n $.  
 +
Here, a given point of the plane is put into correspondence with $  n - 1 $
 +
polars with respect to the curve. The first of these polars is a curve of order $  n - 1 $,  
 +
the second, which is the polar of the given point relative to the first polar, has order $  n - 2 $,  
 +
etc., and, finally, the $  ( n - 1 ) $-
 +
st polar is a straight line.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.V. Efimov,  "Higher geometry" , MIR  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.M. Postnikov,  "Analytic geometry" , Moscow  (1973)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N.V. Efimov,  "Higher geometry" , MIR  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.M. Postnikov,  "Analytic geometry" , Moscow  (1973)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''1–2''' , Springer  (1987)  (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1963)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Busemann,  P.J. Kelly,  "Projective geometry and projective metrics" , Acad. Press  (1953)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J.L. Coolidge,  "Algebraic plane curves" , Dover, reprint  (1959)  pp. 195</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''1–2''' , Springer  (1987)  (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1963)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Busemann,  P.J. Kelly,  "Projective geometry and projective metrics" , Acad. Press  (1953)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J.L. Coolidge,  "Algebraic plane curves" , Dover, reprint  (1959)  pp. 195</TD></TR></table>
  
The polar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340020.png" /> of a subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340021.png" /> in a locally convex topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340022.png" /> is the set of functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340023.png" /> in the dual space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340024.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340025.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340026.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340027.png" /> is the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340028.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340029.png" />). The bipolar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340030.png" /> is the set of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340031.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340032.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340033.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340034.png" />.
+
==Polar of a subset of a topological vector space==
 +
The polar  $  A  ^ {o} $
 +
of a subset  $  A $
 +
in a locally convex topological vector space $  E $
 +
is the set of functionals $  f $
 +
in the dual space $  E  ^  \prime  $
 +
for which $  | \langle  x , f \rangle | \leq  1 $
 +
for all $  x \in A $(
 +
here $  \langle  x , f \rangle $
 +
is the value of $  f $
 +
at $  x $).  
 +
The bipolar $  A  ^ {oo} $
 +
is the set of vectors $  x $
 +
in the space $  E $
 +
for which $  | \langle  x , f \rangle | \leq  1 $
 +
for all $  f \in A  ^ {o} $.
  
The polar is convex, balanced and closed in the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340035.png" /> topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340036.png" />. The bipolar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340037.png" /> is the weak closure of the convex balanced hull of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340038.png" />. In addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340039.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340040.png" /> is a neighbourhood of zero in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340041.png" />, then its polar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340042.png" /> is a compactum in the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340043.png" /> topology (the Banach–Alaoglu theorem).
+
The polar is convex, balanced and closed in the weak- $  * $
 +
topology $  \sigma ( E  ^  \prime  , E) $.  
 +
The bipolar $  A  ^ {oo} $
 +
is the weak closure of the convex balanced hull of the set $  A $.  
 +
In addition, $  ( A  ^ {oo} )  ^ {o} = A  ^ {o} $.  
 +
If $  A $
 +
is a neighbourhood of zero in the space $  E $,  
 +
then its polar $  A  ^ {o} $
 +
is a compactum in the weak- $  * $
 +
topology (the Banach–Alaoglu theorem).
  
The polar of the union <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340044.png" /> of any family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340045.png" /> of sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340046.png" /> is the intersection of the polars of these sets. The polar of the intersection of weakly-closed convex balanced sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340047.png" /> is the closure in the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340048.png" /> topology of the convex hull of their polars. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340049.png" /> is a subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340050.png" />, then its polar coincides with the subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340051.png" /> orthogonal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340052.png" />.
+
The polar of the union $  \cup _  \alpha  A _  \alpha  $
 +
of any family $  \{ A _  \alpha  \} $
 +
of sets in $  E $
 +
is the intersection of the polars of these sets. The polar of the intersection of weakly-closed convex balanced sets $  A _  \alpha  $
 +
is the closure in the weak- $  * $
 +
topology of the convex hull of their polars. If $  A $
 +
is a subspace of $  E $,  
 +
then its polar coincides with the subspace of $  E  ^  \prime  $
 +
orthogonal to $  A $.
  
As a fundamental system of neighbourhoods of zero defining the weak-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340053.png" /> topology of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340054.png" /> one can take the system of sets of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340055.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340056.png" /> runs through all finite subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340057.png" />.
+
As a fundamental system of neighbourhoods of zero defining the weak- $  * $
 +
topology of the space $  E  ^  \prime  $
 +
one can take the system of sets of the form $  M  ^ {o} $
 +
where $  M $
 +
runs through all finite subsets of $  E $.
  
A subset of functionals of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073400/p07340058.png" /> is equicontinuous if and only if it is contained in the polar of some neighbourhood of zero.
+
A subset of functionals of the space $  E  ^  \prime  $
 +
is equicontinuous if and only if it is contained in the polar of some neighbourhood of zero.
  
 
====References====
 
====References====
Line 42: Line 108:
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Köthe,  "Topological vector spaces" , '''1''' , Springer  (1979)  (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.H. Schaefer,  "Topological vector spaces" , Macmillan  (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Jarchow,  "Locally convex spaces" , Teubner  (1981)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Köthe,  "Topological vector spaces" , '''1''' , Springer  (1979)  (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.H. Schaefer,  "Topological vector spaces" , Macmillan  (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Jarchow,  "Locally convex spaces" , Teubner  (1981)  (Translated from German)</TD></TR></table>

Latest revision as of 08:06, 6 June 2020


Polar of a point with respect to a conic

The polar of a point $ P $ with respect to a non-degenerate conic is the line containing all points harmonically conjugate to $ P $ with respect to the points $ M _ {1} $ and $ M _ {2} $ of intersection of the conic with secants through $ P $( cf. Cross ratio). The point $ P $ is called the pole. If the point $ P $ lies outside the conic, then the polar passes through the points of contact of the two tangent lines that can be drawn through $ P $( see Fig. a). If the point $ P $ lies on the curve, then the polar is the tangent to the curve at this point. If the polar of the point $ P $ passes through a point $ Q $, then the polar of $ Q $ passes through $ P $( see Fig. b).

Figure: p073400a

Figure: p073400b

Every non-degenerate conic determines a bijection between the set of points of the projective plane and the set of its straight lines, which is a polarity (a polar transformation). Figures that correspond under this transformation are called mutually polar. A figure coinciding with its polar figure is called autopolar, or self-polar (see, for example, the self-polar triangle $ PQR $ in Fig. b).

Analogously one defines the polar (polar plane) of a point with respect to a non-degenerate surface of the second order.

The concept of a polar relative to a conic can be generalized to curves of order $ n $. Here, a given point of the plane is put into correspondence with $ n - 1 $ polars with respect to the curve. The first of these polars is a curve of order $ n - 1 $, the second, which is the polar of the given point relative to the first polar, has order $ n - 2 $, etc., and, finally, the $ ( n - 1 ) $- st polar is a straight line.

References

[1] N.V. Efimov, "Higher geometry" , MIR (1980) (Translated from Russian)
[2] M.M. Postnikov, "Analytic geometry" , Moscow (1973) (In Russian)

Comments

References

[a1] M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French)
[a2] H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963)
[a3] H. Busemann, P.J. Kelly, "Projective geometry and projective metrics" , Acad. Press (1953)
[a4] J.L. Coolidge, "Algebraic plane curves" , Dover, reprint (1959) pp. 195

Polar of a subset of a topological vector space

The polar $ A ^ {o} $ of a subset $ A $ in a locally convex topological vector space $ E $ is the set of functionals $ f $ in the dual space $ E ^ \prime $ for which $ | \langle x , f \rangle | \leq 1 $ for all $ x \in A $( here $ \langle x , f \rangle $ is the value of $ f $ at $ x $). The bipolar $ A ^ {oo} $ is the set of vectors $ x $ in the space $ E $ for which $ | \langle x , f \rangle | \leq 1 $ for all $ f \in A ^ {o} $.

The polar is convex, balanced and closed in the weak- $ * $ topology $ \sigma ( E ^ \prime , E) $. The bipolar $ A ^ {oo} $ is the weak closure of the convex balanced hull of the set $ A $. In addition, $ ( A ^ {oo} ) ^ {o} = A ^ {o} $. If $ A $ is a neighbourhood of zero in the space $ E $, then its polar $ A ^ {o} $ is a compactum in the weak- $ * $ topology (the Banach–Alaoglu theorem).

The polar of the union $ \cup _ \alpha A _ \alpha $ of any family $ \{ A _ \alpha \} $ of sets in $ E $ is the intersection of the polars of these sets. The polar of the intersection of weakly-closed convex balanced sets $ A _ \alpha $ is the closure in the weak- $ * $ topology of the convex hull of their polars. If $ A $ is a subspace of $ E $, then its polar coincides with the subspace of $ E ^ \prime $ orthogonal to $ A $.

As a fundamental system of neighbourhoods of zero defining the weak- $ * $ topology of the space $ E ^ \prime $ one can take the system of sets of the form $ M ^ {o} $ where $ M $ runs through all finite subsets of $ E $.

A subset of functionals of the space $ E ^ \prime $ is equicontinuous if and only if it is contained in the polar of some neighbourhood of zero.

References

[1] R.E. Edwards, "Functional analysis: theory and applications" , Holt, Rinehart & Winston (1965)

V.I. Lomonosov

Comments

References

[a1] G. Köthe, "Topological vector spaces" , 1 , Springer (1979) (Translated from German)
[a2] H.H. Schaefer, "Topological vector spaces" , Macmillan (1966)
[a3] H. Jarchow, "Locally convex spaces" , Teubner (1981) (Translated from German)
How to Cite This Entry:
Polar. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polar&oldid=14444
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article