|
|
Line 1: |
Line 1: |
− | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671501.png" /> of a space (as a rule, a vector space) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671502.png" /> into a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671503.png" /> over a common field of scalars that does not have the property of linearity, that is, such that generally speaking
| + | <!-- |
| + | n0671501.png |
| + | $#A+1 = 188 n = 0 |
| + | $#C+1 = 188 : ~/encyclopedia/old_files/data/N067/N.0607150 Non\AAhlinear operator |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671504.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671505.png" /> is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671506.png" /> of real or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671507.png" /> of complex numbers, then a non-linear operator is called a [[Non-linear functional|non-linear functional]]. The simplest example of a non-linear operator (non-linear functional) is a real-valued function of a real argument other than a linear function. One of the important sources of the origin of non-linear operators are problems in mathematical physics. If in a local mathematical description of a process small quantities not only of the first but also of higher orders are taken into account, then there arise equations with non-linear operators. Certain problems in mathematical economics, auto-regulation, control theory, etc., also lead to non-linear operator equations. | + | A mapping $ A $ |
| + | of a space (as a rule, a vector space) $ X $ |
| + | into a vector space $ Y $ |
| + | over a common field of scalars that does not have the property of linearity, that is, such that generally speaking |
| + | |
| + | $$ |
| + | A ( \alpha _ {1} x _ {1} + \alpha _ {2} x _ {2} ) \neq \ |
| + | \alpha _ {1} A x _ {1} + \alpha _ {2} A x _ {2} . |
| + | $$ |
| + | |
| + | If $ Y $ |
| + | is the set $ \mathbf R $ |
| + | of real or $ \mathbf C $ |
| + | of complex numbers, then a non-linear operator is called a [[Non-linear functional|non-linear functional]]. The simplest example of a non-linear operator (non-linear functional) is a real-valued function of a real argument other than a linear function. One of the important sources of the origin of non-linear operators are problems in mathematical physics. If in a local mathematical description of a process small quantities not only of the first but also of higher orders are taken into account, then there arise equations with non-linear operators. Certain problems in mathematical economics, auto-regulation, control theory, etc., also lead to non-linear operator equations. |
| | | |
| Examples of non-linear operators. | | Examples of non-linear operators. |
Line 9: |
Line 30: |
| 1) | | 1) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671508.png" /></td> </tr></table>
| + | $$ |
| + | Ax = \int\limits _ { a } ^ { b } K ( t , s , x ( s) ) ds, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n0671509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715012.png" />, is a function such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715013.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715014.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715015.png" /> (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715016.png" /> is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715019.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715020.png" /> is non-linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715021.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715022.png" /> is a non-linear Urysohn operator mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715023.png" /> into itself. Under other restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715024.png" /> an Urysohn operator acts on other spaces, for instance, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715025.png" /> or maps one Orlicz space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715026.png" /> into another <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715027.png" />. | + | where $ K ( t , s , u ) $, |
| + | $ a \leq t $, |
| + | $ s \leq b $, |
| + | $ - \infty < u < \infty $, |
| + | is a function such that $ g ( t) = \int _ {a} ^ {b} K ( t , s , x ( s) ) ds $ |
| + | is continuous on $ [ a , b ] $ |
| + | for any $ x ( s) \in C ( a , b ) $( |
| + | for example, $ K ( t , s , u ) $ |
| + | is continuous on $ a \leq t $, |
| + | $ s \leq b $, |
| + | $ - \infty < u < \infty $). |
| + | If $ K ( t , s , u ) $ |
| + | is non-linear in $ u $, |
| + | then $ A $ |
| + | is a non-linear Urysohn operator mapping $ C [ a , b ] $ |
| + | into itself. Under other restrictions on $ K ( t , s , u ) $ |
| + | an Urysohn operator acts on other spaces, for instance, $ L _ {2} [ a , b ] $ |
| + | or maps one Orlicz space $ L _ {M _ {1} } [ a , b ] $ |
| + | into another $ L _ {M _ {2} } [ a , b ] $. |
| | | |
| 2) | | 2) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715028.png" /></td> </tr></table>
| + | $$ |
| + | Bx = \int\limits _ { a } ^ { b } K ( t , s ) g ( s , x ( s) ) ds , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715029.png" /> is non-linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715030.png" /> and defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715032.png" />. Under appropriate restrictions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715033.png" /> the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715034.png" /> acts from one function space into another and is called a non-linear Hammerstein operator. | + | where $ g ( t , u ) $ |
| + | is non-linear in $ u $ |
| + | and defined for $ a \leq t \leq b $, |
| + | $ - \infty < u < \infty $. |
| + | Under appropriate restrictions on $ g ( t , u ) $ |
| + | the operator $ B $ |
| + | acts from one function space into another and is called a non-linear Hammerstein operator. |
| | | |
| 3) | | 3) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715035.png" /></td> </tr></table>
| + | $$ |
| + | F ( x) = f ( t , x ( t) ) |
| + | $$ |
| | | |
− | is a superposition operator, also called a Nemytskii operator, and, under suitable restrictions on the non-linearity in the second argument of the function, it transforms the space of measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715036.png" /> into itself. | + | is a superposition operator, also called a Nemytskii operator, and, under suitable restrictions on the non-linearity in the second argument of the function, it transforms the space of measurable functions $ x ( t) $ |
| + | into itself. |
| | | |
| 4) | | 4) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715037.png" /></td> </tr></table>
| + | $$ |
| + | D ( x) = \sum _ {| k | \leq m } |
| + | D ^ {k} ( a _ {k} ( t , x , Dx \dots D ^ {k} x )) |
| + | $$ |
| | | |
− | is a non-linear differential operator of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715039.png" /> in divergence form acting on the Sobolev space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715040.png" /> under suitable restrictions on the non-linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715041.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715042.png" /> is the multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715046.png" /> is a bounded domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715047.png" />. | + | is a non-linear differential operator of order $ 2m $ |
| + | in divergence form acting on the Sobolev space $ W _ \rho ^ {2m} ( G) $ |
| + | under suitable restrictions on the non-linear function $ a _ {k} ( t , u _ {0} \dots u _ {m} ) $. |
| + | Here $ k $ |
| + | is the multi-index $ ( k _ {1} \dots k _ {n} ) $, |
| + | $ | k | = k _ {1} + \dots + k _ {n} $, |
| + | $ D ^ {k} = {\partial ^ {| k | } } / {\partial t _ {1} ^ {k _ {1} } \dots \partial t _ {n} ^ {k _ {n} } } $ |
| + | and $ G $ |
| + | is a bounded domain in $ \mathbf R ^ {n} $. |
| | | |
| 5) | | 5) |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715048.png" /></td> </tr></table>
| + | $$ |
| + | J ( x) = \int\limits _ { a } ^ { b } |
| + | K ( t , s , x ( s) , x ^ \prime ( s) ) ds |
| + | $$ |
| | | |
− | is non-linear integro-differential operator acting under appropriate restrictions on the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715049.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715050.png" /> of continuously-differentiable functions. | + | is non-linear integro-differential operator acting under appropriate restrictions on the function $ K ( t , s , u _ {0} , u _ {1} ) $ |
| + | in the space $ C ^ {1} [ a , b ] $ |
| + | of continuously-differentiable functions. |
| | | |
− | To non-linear operators acting from one topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715051.png" /> into another one <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715052.png" />, many concepts and operations of mathematical analysis of real-valued functions of a real variable can be transferred. Thus, a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715054.png" />, is called bounded if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715055.png" /> is a bounded set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715056.png" /> for any bounded set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715057.png" />; a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715058.png" /> is continuous at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715059.png" /> if the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715060.png" /> of a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715061.png" /> of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715062.png" /> contains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715063.png" /> for some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715064.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715065.png" />. As for functions, a non-linear operator that is continuous at every point of a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715066.png" /> is bounded on this set. In contrast to linear operators, if a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715067.png" /> acting on a normed space is bounded on some ball, it does not follow that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715068.png" /> is continuous on this ball. However, in certain cases continuity (boundedness) of a non-linear operator on a ball implies continuity (boundedness) of the operator in its whole domain of definition. | + | To non-linear operators acting from one topological vector space $ X $ |
| + | into another one $ Y $, |
| + | many concepts and operations of mathematical analysis of real-valued functions of a real variable can be transferred. Thus, a non-linear operator $ A : M \rightarrow Y $, |
| + | $ M \subset X $, |
| + | is called bounded if $ A ( B \cap M ) $ |
| + | is a bounded set in $ Y $ |
| + | for any bounded set $ B \subset X $; |
| + | a non-linear operator $ A $ |
| + | is continuous at a point $ x \in M $ |
| + | if the inverse image $ A ^ {-} 1 ( U _ {Ax} ) $ |
| + | of a neighbourhood $ U _ {Ax} $ |
| + | of the point $ Ax $ |
| + | contains $ M \cap U _ {x} $ |
| + | for some neighbourhood $ U _ {x} $ |
| + | of $ x $. |
| + | As for functions, a non-linear operator that is continuous at every point of a compact set $ M $ |
| + | is bounded on this set. In contrast to linear operators, if a non-linear operator $ A $ |
| + | acting on a normed space is bounded on some ball, it does not follow that $ A $ |
| + | is continuous on this ball. However, in certain cases continuity (boundedness) of a non-linear operator on a ball implies continuity (boundedness) of the operator in its whole domain of definition. |
| | | |
− | Among the non-linear operators acting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715069.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715070.png" /> one can distinguish certain important classes. | + | Among the non-linear operators acting from $ X $ |
| + | to $ Y $ |
| + | one can distinguish certain important classes. |
| | | |
− | 1) Semi-linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715071.png" />, linear in each argument. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715072.png" /> of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715073.png" />-linear operators is isomorphic to the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715074.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715075.png" /> is the space of all linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715076.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715078.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715079.png" /> are normed spaces, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715080.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715081.png" /> are isometric. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715082.png" /> is symmetric in all arguments, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715083.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715084.png" /> and is called a homogeneous operator of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715086.png" />. | + | 1) Semi-linear operators $ A : X \times \dots \times X \rightarrow Y $, |
| + | linear in each argument. The space $ L _ {n} ( X , Y ) = ( I) $ |
| + | of all $ n $- |
| + | linear operators is isomorphic to the space $ L \{ X [ \dots L ( X , Y ) , . . . ] \} = ( II) $, |
| + | where $ L ( X , Y ) $ |
| + | is the space of all linear operators from $ X $ |
| + | to $ Y $. |
| + | If $ X $ |
| + | and $ Y $ |
| + | are normed spaces, then $ ( I) $ |
| + | and $ ( II) $ |
| + | are isometric. If $ A $ |
| + | is symmetric in all arguments, then $ \widetilde{A} ( x \dots x ) $ |
| + | is denoted by $ \widetilde{A} x ^ {n} $ |
| + | and is called a homogeneous operator of degree $ n $. |
| | | |
− | 2) In spaces endowed with a partial order, isotone operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715087.png" /> and antitone operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715088.png" /> are characterized by the conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715089.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715090.png" />. | + | 2) In spaces endowed with a partial order, isotone operators $ A $ |
| + | and antitone operators $ \widetilde{A} $ |
| + | are characterized by the conditions $ x \leq y \Rightarrow Ax \leq Ay $ |
| + | and $ x \leq y \Rightarrow \widetilde{A} x \geq \widetilde{A} y $. |
| | | |
− | 3) In a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715091.png" />, monotone operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715092.png" /> are defined by the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715093.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715094.png" />. | + | 3) In a Hilbert space $ H $, |
| + | monotone operators $ M $ |
| + | are defined by the condition $ \langle Mx - My , x - y \rangle \geq 0 $ |
| + | for any $ x , y \in H $. |
| | | |
| 4) Compact operators transform bounded subsets in the domain of definition into pre-compact sets; among them are the completely-continuous operators, which are simultaneously compact and continuous. | | 4) Compact operators transform bounded subsets in the domain of definition into pre-compact sets; among them are the completely-continuous operators, which are simultaneously compact and continuous. |
| | | |
− | For non-linear operators the concepts of a differential and a derivative are non-trivial and useful. An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715095.png" /> acting from an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715096.png" /> of a normed vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715097.png" /> into a normed vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715098.png" /> is called Fréchet differentiable at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n06715099.png" /> if there exists a continuous linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150100.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150101.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150102.png" />, | + | For non-linear operators the concepts of a differential and a derivative are non-trivial and useful. An operator $ A $ |
| + | acting from an open set $ G $ |
| + | of a normed vector space $ X $ |
| + | into a normed vector space $ Y $ |
| + | is called Fréchet differentiable at a point $ x \in G $ |
| + | if there exists a continuous linear operator $ A ^ \prime ( x) : X \rightarrow Y $ |
| + | such that for any $ h \in X $ |
| + | for which $ x + h \in G $, |
| + | |
| + | $$ |
| + | A ( x+ h ) - A ( x) = A ^ \prime ( x) h + \omega , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150103.png" /></td> </tr></table>
| + | where $ \omega / \| h \| \rightarrow 0 $ |
| + | as $ h \rightarrow 0 $. |
| + | In this case the linear part $ A ^ \prime ( x) h $ |
| + | in $ h $ |
| + | of the increment $ A ( x+ h) - A ( x) $ |
| + | is called the Fréchet differential of $ A $ |
| + | at $ x $ |
| + | and is denoted by $ dA ( x , h ) $, |
| + | and $ \omega = \omega ( A , x , h ) $ |
| + | is called the remainder of the increment. The bounded linear operator $ A ^ \prime ( x) $ |
| + | is called the Fréchet derivative of $ A $ |
| + | at $ x $. |
| + | Apart from Fréchet differentiability one also introduces Gâteaux differentiability. Namely, an operator $ A $ |
| + | is called Gâteaux differentiable at a point $ x $ |
| + | if the limit |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150104.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150105.png" />. In this case the linear part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150106.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150107.png" /> of the increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150108.png" /> is called the Fréchet differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150109.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150110.png" /> and is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150111.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150112.png" /> is called the remainder of the increment. The bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150113.png" /> is called the Fréchet derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150114.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150115.png" />. Apart from Fréchet differentiability one also introduces Gâteaux differentiability. Namely, an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150116.png" /> is called Gâteaux differentiable at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150117.png" /> if the limit
| + | $$ |
| + | \lim\limits _ {t \rightarrow 0 } \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150118.png" /></td> </tr></table>
| + | \frac{A ( x+ th ) - A ( x) }{t} |
| + | = DA ( x , h ) |
| + | $$ |
| | | |
− | exists, which is called the Gâteaux differential of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150119.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150120.png" />. The Gâteaux differential is homogeneous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150121.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150122.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150123.png" /> is linear in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150124.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150125.png" />, then the linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150126.png" /> is called the Gâteaux derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150127.png" />. Fréchet differentiability implies Gâteaux differentiability, and then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150128.png" />. Gâteaux differentiability does not, in general, imply Fréchet differentiability, but if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150129.png" /> exists in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150130.png" />, is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150131.png" /> and uniformly continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150132.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150133.png" /> is Fréchet differentiable at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150134.png" />. For non-linear functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150135.png" /> Fréchet and Gâteaux differentials and derivatives are defined similarly. Here the Gâteaux derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150136.png" /> is called the gradient of the functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150137.png" /> and is an operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150138.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150139.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150140.png" /> for some non-linear functional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150141.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150142.png" /> is called a potential operator. | + | exists, which is called the Gâteaux differential of $ A $ |
| + | at $ x $. |
| + | The Gâteaux differential is homogeneous in $ h $, |
| + | that is, $ DA ( x , \lambda h ) = \lambda DA ( x , h ) $. |
| + | If $ DA ( x , h ) $ |
| + | is linear in $ h $ |
| + | and $ DA ( x , h ) = A _ {0} ^ \prime ( x) h $, |
| + | then the linear operator $ A _ {0} ^ \prime ( x) $ |
| + | is called the Gâteaux derivative of $ A $. |
| + | Fréchet differentiability implies Gâteaux differentiability, and then $ A _ {0} ^ \prime ( x) = A ^ \prime ( x) $. |
| + | Gâteaux differentiability does not, in general, imply Fréchet differentiability, but if $ DA ( x , h ) $ |
| + | exists in a neighbourhood of $ x $, |
| + | is continuous in $ h $ |
| + | and uniformly continuous in $ x $, |
| + | then $ A $ |
| + | is Fréchet differentiable at $ x $. |
| + | For non-linear functionals $ f : G \rightarrow \mathbf R $ |
| + | Fréchet and Gâteaux differentials and derivatives are defined similarly. Here the Gâteaux derivative $ f _ {0} ^ { \prime } $ |
| + | is called the gradient of the functional $ f $ |
| + | and is an operator from $ G $ |
| + | to $ X ^ {*} $. |
| + | If $ Ax = \mathop{\rm grad} f ( x) $ |
| + | for some non-linear functional $ f $, |
| + | then $ A $ |
| + | is called a potential operator. |
| | | |
− | For operators acting on separable topological vector spaces one can in one way or another define differentiation. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150143.png" /> be a collection of bounded sets in a topological vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150144.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150145.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150147.png" />-small if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150148.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150149.png" /> uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150150.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150151.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150152.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150153.png" /> is open) is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150155.png" />-differentiable at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150156.png" /> if | + | For operators acting on separable topological vector spaces one can in one way or another define differentiation. Let $ \mathfrak M $ |
| + | be a collection of bounded sets in a topological vector space $ X $. |
| + | A mapping $ \omega : G \times X \rightarrow Y $ |
| + | is called $ \mathfrak M $- |
| + | small if $ \omega ( x , th ) / t \rightarrow 0 $ |
| + | as $ t \rightarrow 0 $ |
| + | uniformly in $ h \in \mathfrak M $ |
| + | for any $ M \in \mathfrak M $. |
| + | A mapping $ A : G \rightarrow Y $( |
| + | where $ G \subset X $ |
| + | is open) is called $ \mathfrak M $- |
| + | differentiable at $ x \in G $ |
| + | if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150157.png" /></td> </tr></table>
| + | $$ |
| + | A ( x+ h ) - A x = A ^ \prime ( x) h + \omega ( A , x , h ) , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150158.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150159.png" />-small mapping. Most frequently <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150160.png" /> is taken to be the collection of all bounded, all compact or all finite sets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150161.png" />. For non-linear operators on normed spaces the first case leads to Fréchet differentiability and the third to Gâteaux differentiability. | + | where $ \omega $ |
| + | is an $ \mathfrak M $- |
| + | small mapping. Most frequently $ \mathfrak M $ |
| + | is taken to be the collection of all bounded, all compact or all finite sets of $ X $. |
| + | For non-linear operators on normed spaces the first case leads to Fréchet differentiability and the third to Gâteaux differentiability. |
| | | |
− | Higher-order derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150162.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150163.png" /> of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150164.png" /> are defined in the usual way, as derivatives of derivatives. These are symmetric multi-linear mappings. A differential of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150165.png" /> is then a homogeneous form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150166.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150167.png" />. Other definitions of higher-order derivatives are possible. Suppose, for example, that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150168.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150169.png" /> are normed vector spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150170.png" /> is open, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150171.png" />. If for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150172.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150173.png" />, | + | Higher-order derivatives $ A ^ {(} n) ( x) $ |
| + | and $ A _ {0} ^ {(} n) ( x) $ |
| + | of an operator $ A $ |
| + | are defined in the usual way, as derivatives of derivatives. These are symmetric multi-linear mappings. A differential of order $ n $ |
| + | is then a homogeneous form $ A ^ {(} n) ( x) h ^ {n} $ |
| + | of degree $ n $. |
| + | Other definitions of higher-order derivatives are possible. Suppose, for example, that $ X $ |
| + | and $ Y $ |
| + | are normed vector spaces, $ G \subset X $ |
| + | is open, and $ x \in G $. |
| + | If for any $ h $ |
| + | for which $ x + h \in G $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150174.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
| + | $$ \tag{* } |
| + | A ( x+ h) - A( x) = \ |
| + | a _ {0} ( x) + a _ {1} ( x) h + \dots + a _ {n} ( x) h ^ {n} + |
| + | \omega , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150175.png" />, then the multi-linear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150176.png" /> is called the derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150178.png" />. The expression (*) is then called the bounded expansion of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150180.png" /> of the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150181.png" />. Under appropriate restrictions the various definitions of higher-order derivatives are equivalent. | + | where $ \omega = o ( \| h \| ^ {n} ) $, |
| + | then the multi-linear form $ k! a _ {k} ( x) $ |
| + | is called the derivative of order $ k $. |
| + | The expression (*) is then called the bounded expansion of order $ n $ |
| + | of the difference $ A( x+ h) - A ( x) $. |
| + | Under appropriate restrictions the various definitions of higher-order derivatives are equivalent. |
| | | |
− | If a scalar countably-additive measure is given in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150182.png" />, then a non-linear operator can be integrated, by understanding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150183.png" /> in the sense of the [[Bochner integral|Bochner integral]]. | + | If a scalar countably-additive measure is given in $ X $, |
| + | then a non-linear operator can be integrated, by understanding $ \int A ( x) dx $ |
| + | in the sense of the [[Bochner integral|Bochner integral]]. |
| | | |
− | For a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150184.png" />, as in the case of a linear operator, the values of the parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150185.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150186.png" /> exists and is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150187.png" /> are naturally called regular, and the remaining points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150188.png" /> belong to the spectrum. In its properties the spectrum of a non-linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150189.png" /> can differ vastly from spectra of linear operators. Thus, the spectrum of a completely-continuous non-linear operator can have continuous parts; an eigen element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150190.png" /> of an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150191.png" />, that is, an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150192.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150193.png" />, can bifurcate into several eigen element branches (as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067150/n067150194.png" /> varies), cf. [[Bifurcation|Bifurcation]]. | + | For a non-linear operator $ A : M \rightarrow Y $, |
| + | as in the case of a linear operator, the values of the parameter $ \lambda $ |
| + | for which $ ( I - \lambda A ) ^ {-} 1 $ |
| + | exists and is continuous on $ A ( M) $ |
| + | are naturally called regular, and the remaining points $ \lambda $ |
| + | belong to the spectrum. In its properties the spectrum of a non-linear operator $ A $ |
| + | can differ vastly from spectra of linear operators. Thus, the spectrum of a completely-continuous non-linear operator can have continuous parts; an eigen element $ x _ {0} $ |
| + | of an operator $ A $, |
| + | that is, an element $ x _ {0} $ |
| + | such that $ x _ {0} = \lambda A x _ {0} $, |
| + | can bifurcate into several eigen element branches (as $ \lambda $ |
| + | varies), cf. [[Bifurcation|Bifurcation]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elemente der Funktionalanalysis" , Akademie Verlag (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Vainberg, "Variational methods for the study of nonlinear operators" , Holden-Day (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.A. Krasnosel'skii, P.P. Zabreiko, "Geometric methods of non-linear analysis" , Springer (1983) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elemente der Funktionalanalysis" , Akademie Verlag (1968) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.M. Vainberg, "Variational methods for the study of nonlinear operators" , Holden-Day (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.A. Krasnosel'skii, P.P. Zabreiko, "Geometric methods of non-linear analysis" , Springer (1983) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974)</TD></TR></table> |
A mapping $ A $
of a space (as a rule, a vector space) $ X $
into a vector space $ Y $
over a common field of scalars that does not have the property of linearity, that is, such that generally speaking
$$
A ( \alpha _ {1} x _ {1} + \alpha _ {2} x _ {2} ) \neq \
\alpha _ {1} A x _ {1} + \alpha _ {2} A x _ {2} .
$$
If $ Y $
is the set $ \mathbf R $
of real or $ \mathbf C $
of complex numbers, then a non-linear operator is called a non-linear functional. The simplest example of a non-linear operator (non-linear functional) is a real-valued function of a real argument other than a linear function. One of the important sources of the origin of non-linear operators are problems in mathematical physics. If in a local mathematical description of a process small quantities not only of the first but also of higher orders are taken into account, then there arise equations with non-linear operators. Certain problems in mathematical economics, auto-regulation, control theory, etc., also lead to non-linear operator equations.
Examples of non-linear operators.
1)
$$
Ax = \int\limits _ { a } ^ { b } K ( t , s , x ( s) ) ds,
$$
where $ K ( t , s , u ) $,
$ a \leq t $,
$ s \leq b $,
$ - \infty < u < \infty $,
is a function such that $ g ( t) = \int _ {a} ^ {b} K ( t , s , x ( s) ) ds $
is continuous on $ [ a , b ] $
for any $ x ( s) \in C ( a , b ) $(
for example, $ K ( t , s , u ) $
is continuous on $ a \leq t $,
$ s \leq b $,
$ - \infty < u < \infty $).
If $ K ( t , s , u ) $
is non-linear in $ u $,
then $ A $
is a non-linear Urysohn operator mapping $ C [ a , b ] $
into itself. Under other restrictions on $ K ( t , s , u ) $
an Urysohn operator acts on other spaces, for instance, $ L _ {2} [ a , b ] $
or maps one Orlicz space $ L _ {M _ {1} } [ a , b ] $
into another $ L _ {M _ {2} } [ a , b ] $.
2)
$$
Bx = \int\limits _ { a } ^ { b } K ( t , s ) g ( s , x ( s) ) ds ,
$$
where $ g ( t , u ) $
is non-linear in $ u $
and defined for $ a \leq t \leq b $,
$ - \infty < u < \infty $.
Under appropriate restrictions on $ g ( t , u ) $
the operator $ B $
acts from one function space into another and is called a non-linear Hammerstein operator.
3)
$$
F ( x) = f ( t , x ( t) )
$$
is a superposition operator, also called a Nemytskii operator, and, under suitable restrictions on the non-linearity in the second argument of the function, it transforms the space of measurable functions $ x ( t) $
into itself.
4)
$$
D ( x) = \sum _ {| k | \leq m }
D ^ {k} ( a _ {k} ( t , x , Dx \dots D ^ {k} x ))
$$
is a non-linear differential operator of order $ 2m $
in divergence form acting on the Sobolev space $ W _ \rho ^ {2m} ( G) $
under suitable restrictions on the non-linear function $ a _ {k} ( t , u _ {0} \dots u _ {m} ) $.
Here $ k $
is the multi-index $ ( k _ {1} \dots k _ {n} ) $,
$ | k | = k _ {1} + \dots + k _ {n} $,
$ D ^ {k} = {\partial ^ {| k | } } / {\partial t _ {1} ^ {k _ {1} } \dots \partial t _ {n} ^ {k _ {n} } } $
and $ G $
is a bounded domain in $ \mathbf R ^ {n} $.
5)
$$
J ( x) = \int\limits _ { a } ^ { b }
K ( t , s , x ( s) , x ^ \prime ( s) ) ds
$$
is non-linear integro-differential operator acting under appropriate restrictions on the function $ K ( t , s , u _ {0} , u _ {1} ) $
in the space $ C ^ {1} [ a , b ] $
of continuously-differentiable functions.
To non-linear operators acting from one topological vector space $ X $
into another one $ Y $,
many concepts and operations of mathematical analysis of real-valued functions of a real variable can be transferred. Thus, a non-linear operator $ A : M \rightarrow Y $,
$ M \subset X $,
is called bounded if $ A ( B \cap M ) $
is a bounded set in $ Y $
for any bounded set $ B \subset X $;
a non-linear operator $ A $
is continuous at a point $ x \in M $
if the inverse image $ A ^ {-} 1 ( U _ {Ax} ) $
of a neighbourhood $ U _ {Ax} $
of the point $ Ax $
contains $ M \cap U _ {x} $
for some neighbourhood $ U _ {x} $
of $ x $.
As for functions, a non-linear operator that is continuous at every point of a compact set $ M $
is bounded on this set. In contrast to linear operators, if a non-linear operator $ A $
acting on a normed space is bounded on some ball, it does not follow that $ A $
is continuous on this ball. However, in certain cases continuity (boundedness) of a non-linear operator on a ball implies continuity (boundedness) of the operator in its whole domain of definition.
Among the non-linear operators acting from $ X $
to $ Y $
one can distinguish certain important classes.
1) Semi-linear operators $ A : X \times \dots \times X \rightarrow Y $,
linear in each argument. The space $ L _ {n} ( X , Y ) = ( I) $
of all $ n $-
linear operators is isomorphic to the space $ L \{ X [ \dots L ( X , Y ) , . . . ] \} = ( II) $,
where $ L ( X , Y ) $
is the space of all linear operators from $ X $
to $ Y $.
If $ X $
and $ Y $
are normed spaces, then $ ( I) $
and $ ( II) $
are isometric. If $ A $
is symmetric in all arguments, then $ \widetilde{A} ( x \dots x ) $
is denoted by $ \widetilde{A} x ^ {n} $
and is called a homogeneous operator of degree $ n $.
2) In spaces endowed with a partial order, isotone operators $ A $
and antitone operators $ \widetilde{A} $
are characterized by the conditions $ x \leq y \Rightarrow Ax \leq Ay $
and $ x \leq y \Rightarrow \widetilde{A} x \geq \widetilde{A} y $.
3) In a Hilbert space $ H $,
monotone operators $ M $
are defined by the condition $ \langle Mx - My , x - y \rangle \geq 0 $
for any $ x , y \in H $.
4) Compact operators transform bounded subsets in the domain of definition into pre-compact sets; among them are the completely-continuous operators, which are simultaneously compact and continuous.
For non-linear operators the concepts of a differential and a derivative are non-trivial and useful. An operator $ A $
acting from an open set $ G $
of a normed vector space $ X $
into a normed vector space $ Y $
is called Fréchet differentiable at a point $ x \in G $
if there exists a continuous linear operator $ A ^ \prime ( x) : X \rightarrow Y $
such that for any $ h \in X $
for which $ x + h \in G $,
$$
A ( x+ h ) - A ( x) = A ^ \prime ( x) h + \omega ,
$$
where $ \omega / \| h \| \rightarrow 0 $
as $ h \rightarrow 0 $.
In this case the linear part $ A ^ \prime ( x) h $
in $ h $
of the increment $ A ( x+ h) - A ( x) $
is called the Fréchet differential of $ A $
at $ x $
and is denoted by $ dA ( x , h ) $,
and $ \omega = \omega ( A , x , h ) $
is called the remainder of the increment. The bounded linear operator $ A ^ \prime ( x) $
is called the Fréchet derivative of $ A $
at $ x $.
Apart from Fréchet differentiability one also introduces Gâteaux differentiability. Namely, an operator $ A $
is called Gâteaux differentiable at a point $ x $
if the limit
$$
\lim\limits _ {t \rightarrow 0 } \
\frac{A ( x+ th ) - A ( x) }{t}
= DA ( x , h )
$$
exists, which is called the Gâteaux differential of $ A $
at $ x $.
The Gâteaux differential is homogeneous in $ h $,
that is, $ DA ( x , \lambda h ) = \lambda DA ( x , h ) $.
If $ DA ( x , h ) $
is linear in $ h $
and $ DA ( x , h ) = A _ {0} ^ \prime ( x) h $,
then the linear operator $ A _ {0} ^ \prime ( x) $
is called the Gâteaux derivative of $ A $.
Fréchet differentiability implies Gâteaux differentiability, and then $ A _ {0} ^ \prime ( x) = A ^ \prime ( x) $.
Gâteaux differentiability does not, in general, imply Fréchet differentiability, but if $ DA ( x , h ) $
exists in a neighbourhood of $ x $,
is continuous in $ h $
and uniformly continuous in $ x $,
then $ A $
is Fréchet differentiable at $ x $.
For non-linear functionals $ f : G \rightarrow \mathbf R $
Fréchet and Gâteaux differentials and derivatives are defined similarly. Here the Gâteaux derivative $ f _ {0} ^ { \prime } $
is called the gradient of the functional $ f $
and is an operator from $ G $
to $ X ^ {*} $.
If $ Ax = \mathop{\rm grad} f ( x) $
for some non-linear functional $ f $,
then $ A $
is called a potential operator.
For operators acting on separable topological vector spaces one can in one way or another define differentiation. Let $ \mathfrak M $
be a collection of bounded sets in a topological vector space $ X $.
A mapping $ \omega : G \times X \rightarrow Y $
is called $ \mathfrak M $-
small if $ \omega ( x , th ) / t \rightarrow 0 $
as $ t \rightarrow 0 $
uniformly in $ h \in \mathfrak M $
for any $ M \in \mathfrak M $.
A mapping $ A : G \rightarrow Y $(
where $ G \subset X $
is open) is called $ \mathfrak M $-
differentiable at $ x \in G $
if
$$
A ( x+ h ) - A x = A ^ \prime ( x) h + \omega ( A , x , h ) ,
$$
where $ \omega $
is an $ \mathfrak M $-
small mapping. Most frequently $ \mathfrak M $
is taken to be the collection of all bounded, all compact or all finite sets of $ X $.
For non-linear operators on normed spaces the first case leads to Fréchet differentiability and the third to Gâteaux differentiability.
Higher-order derivatives $ A ^ {(} n) ( x) $
and $ A _ {0} ^ {(} n) ( x) $
of an operator $ A $
are defined in the usual way, as derivatives of derivatives. These are symmetric multi-linear mappings. A differential of order $ n $
is then a homogeneous form $ A ^ {(} n) ( x) h ^ {n} $
of degree $ n $.
Other definitions of higher-order derivatives are possible. Suppose, for example, that $ X $
and $ Y $
are normed vector spaces, $ G \subset X $
is open, and $ x \in G $.
If for any $ h $
for which $ x + h \in G $,
$$ \tag{* }
A ( x+ h) - A( x) = \
a _ {0} ( x) + a _ {1} ( x) h + \dots + a _ {n} ( x) h ^ {n} +
\omega ,
$$
where $ \omega = o ( \| h \| ^ {n} ) $,
then the multi-linear form $ k! a _ {k} ( x) $
is called the derivative of order $ k $.
The expression (*) is then called the bounded expansion of order $ n $
of the difference $ A( x+ h) - A ( x) $.
Under appropriate restrictions the various definitions of higher-order derivatives are equivalent.
If a scalar countably-additive measure is given in $ X $,
then a non-linear operator can be integrated, by understanding $ \int A ( x) dx $
in the sense of the Bochner integral.
For a non-linear operator $ A : M \rightarrow Y $,
as in the case of a linear operator, the values of the parameter $ \lambda $
for which $ ( I - \lambda A ) ^ {-} 1 $
exists and is continuous on $ A ( M) $
are naturally called regular, and the remaining points $ \lambda $
belong to the spectrum. In its properties the spectrum of a non-linear operator $ A $
can differ vastly from spectra of linear operators. Thus, the spectrum of a completely-continuous non-linear operator can have continuous parts; an eigen element $ x _ {0} $
of an operator $ A $,
that is, an element $ x _ {0} $
such that $ x _ {0} = \lambda A x _ {0} $,
can bifurcate into several eigen element branches (as $ \lambda $
varies), cf. Bifurcation.
References
[1] | L.A. Lyusternik, V.I. Sobolev, "Elemente der Funktionalanalysis" , Akademie Verlag (1968) (Translated from Russian) |
[2] | L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian) |
[3] | M.M. Vainberg, "Variational methods for the study of nonlinear operators" , Holden-Day (1964) (Translated from Russian) |
[4] | M.A. Krasnosel'skii, P.P. Zabreiko, "Geometric methods of non-linear analysis" , Springer (1983) (Translated from Russian) |
[5] | H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974) |