|
|
(3 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | A square [[Matrix|matrix]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857201.png" /> over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857202.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857203.png" />. The rank of a skew-symmetric matrix is an even number. Any square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857204.png" /> over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857205.png" /> is the sum of a symmetric and a skew-symmetric matrix: | + | A square [[matrix]] $A$ over a field of characteristic $\ne 2$ such that $A^T = -A$. The rank of a skew-symmetric matrix is an even number. Any square matrix $B$ over a field of characteristic $\ne 2$ is the sum of a [[symmetric matrix]] and a skew-symmetric matrix: |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857206.png" /></td> </tr></table>
| + | B = \frac12(B + B^T) + \frac12(B - B^T) \ . |
− | | + | $$ |
− | The non-zero roots of the characteristic polynomial of a real skew-symmetric matrix are purely imaginary numbers. A real skew-symmetric matrix is similar to a matrix | + | The non-zero roots of the [[characteristic polynomial]] of a real skew-symmetric matrix are purely [[imaginary number]]s. A real skew-symmetric matrix is [[Similar matrices|similar]] to a matrix |
− | | + | $$ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857207.png" /></td> </tr></table>
| + | \text{diag}[A_1,A_2,\ldots,A_t,0,0,\ldots] |
− | | + | $$ |
| where | | where |
| + | $$ |
| + | A_i = \alpha_i \left( \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) |
| + | $$ |
| + | with $\alpha_i$ real numbers, $i = 1,\ldots,t$. The [[Jordan normal form]] $J$ of a complex skew-symmetric matrix possesses the following properties: 1) a Jordan block $J_m(\lambda)$ with elementary divisor $(X-\lambda)^m$, where $\lambda \ne 0$, is repeated in $J$ as many times as is the cell $J_m(-\lambda)$; and 2) if $m$ is even, the Jordan block $J_m(0)$ with elementary divisor $X^m$ is repeated in $J$ an even number of times. Any complex Jordan matrix with the properties 1) and 2) is similar to some skew-symmetric matrix. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857208.png" /></td> </tr></table>
| + | The set of all skew-symmetric matrices of order $n$ over a field $k$ forms a [[Lie algebra]] over $k$ with respect to [[matrix addition]] and the commutator $[A,B] = AB - BA$. |
− | | |
− | with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s0857209.png" /> real numbers, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572010.png" />. The Jordan form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572011.png" /> of a complex skew-symmetric matrix possesses the following properties: 1) a Jordan cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572012.png" /> with elementary divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572014.png" />, is repeated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572015.png" /> as many times as is the cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572016.png" />; and 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572017.png" /> is even, the Jordan cell <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572018.png" /> with elementary divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572019.png" /> is repeated in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572020.png" /> an even number of times. Any complex Jordan matrix with the properties 1) and 2) is similar to some skew-symmetric matrix.
| |
− | | |
− | The set of all skew-symmetric matrices of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572021.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572022.png" /> forms a [[Lie algebra|Lie algebra]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572023.png" /> with respect to matrix addition and the commutator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572024.png" />. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1977) (Translated from Russian)</TD></TR> |
| + | </table> |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | The Lie algebra of skew-symmetric matrices over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572025.png" /> of size <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572026.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572027.png" />. The complex Lie algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572028.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572029.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572030.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572031.png" />) are simple of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085720/s08572033.png" />, respectively. | + | The Lie algebra of skew-symmetric matrices over a field $k$ of size $n \times n$ is denoted by $\mathfrak{so}(n,k)$. The complex Lie algebras $\mathfrak{so}(2n,\mathbf{C})$ ($n \ge 4$) and $\mathfrak{so}(2n_1,\mathbf{C})$ ($n \ge 2$) are simple of type $D_n$ and $B_n$, respectively. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X</TD></TR> |
| + | </table> |
| + | |
| + | {{TEX|done}} |
Latest revision as of 06:23, 12 September 2016
A square matrix $A$ over a field of characteristic $\ne 2$ such that $A^T = -A$. The rank of a skew-symmetric matrix is an even number. Any square matrix $B$ over a field of characteristic $\ne 2$ is the sum of a symmetric matrix and a skew-symmetric matrix:
$$
B = \frac12(B + B^T) + \frac12(B - B^T) \ .
$$
The non-zero roots of the characteristic polynomial of a real skew-symmetric matrix are purely imaginary numbers. A real skew-symmetric matrix is similar to a matrix
$$
\text{diag}[A_1,A_2,\ldots,A_t,0,0,\ldots]
$$
where
$$
A_i = \alpha_i \left( \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)
$$
with $\alpha_i$ real numbers, $i = 1,\ldots,t$. The Jordan normal form $J$ of a complex skew-symmetric matrix possesses the following properties: 1) a Jordan block $J_m(\lambda)$ with elementary divisor $(X-\lambda)^m$, where $\lambda \ne 0$, is repeated in $J$ as many times as is the cell $J_m(-\lambda)$; and 2) if $m$ is even, the Jordan block $J_m(0)$ with elementary divisor $X^m$ is repeated in $J$ an even number of times. Any complex Jordan matrix with the properties 1) and 2) is similar to some skew-symmetric matrix.
The set of all skew-symmetric matrices of order $n$ over a field $k$ forms a Lie algebra over $k$ with respect to matrix addition and the commutator $[A,B] = AB - BA$.
References
[1] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian) |
The Lie algebra of skew-symmetric matrices over a field $k$ of size $n \times n$ is denoted by $\mathfrak{so}(n,k)$. The complex Lie algebras $\mathfrak{so}(2n,\mathbf{C})$ ($n \ge 4$) and $\mathfrak{so}(2n_1,\mathbf{C})$ ($n \ge 2$) are simple of type $D_n$ and $B_n$, respectively.
References
[a1] | S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X |
How to Cite This Entry:
Skew-symmetric matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Skew-symmetric_matrix&oldid=14074
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article