|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A generalization of the classical calculus of differential forms and differential operators to analytic spaces. For the calculus of differential forms on complex manifolds see [[Differential form|Differential form]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318601.png" /> be an [[Analytic space|analytic space]] over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318602.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318603.png" /> be the diagonal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318604.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318605.png" /> be the sheaf of ideals defining <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318606.png" /> and generated by all germs of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318607.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318608.png" /> is an arbitrary germ from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d0318609.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186010.png" /> be projection on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186011.png" />-th factor.
| + | <!-- |
| + | d0318601.png |
| + | $#A+1 = 111 n = 0 |
| + | $#C+1 = 111 : ~/encyclopedia/old_files/data/D031/D.0301860 Differential calculus (on analytic spaces) |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The analytic sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186012.png" /> is known as the sheaf of analytic differential forms of the first order on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186013.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186014.png" /> is the germ of an analytic function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186015.png" />, then the germ <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186016.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186017.png" /> and defines the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186018.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186019.png" /> known as the differential of the germ <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186020.png" />. This defines a sheaf homomorphism of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186021.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186022.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186023.png" /> is the free sheaf generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186025.png" /> are the coordinates in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186027.png" /> is an analytic subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186028.png" />, defined by a sheaf of ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186029.png" />, then
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186030.png" /></td> </tr></table>
| + | A generalization of the classical calculus of differential forms and differential operators to analytic spaces. For the calculus of differential forms on complex manifolds see [[Differential form|Differential form]]. Let $ ( X, {\mathcal O} _ {X} ) $ |
| + | be an [[Analytic space|analytic space]] over a field $ k $, |
| + | let $ \Delta $ |
| + | be the diagonal in $ X \times X $, |
| + | let $ J $ |
| + | be the sheaf of ideals defining $ \Delta $ |
| + | and generated by all germs of the form $ \pi _ {1} ^ {*} f - \pi _ {2} ^ {*} f $, |
| + | where $ f $ |
| + | is an arbitrary germ from $ {\mathcal O} _ {X} $, |
| + | and let $ \pi _ {i} : X \times X \rightarrow X $ |
| + | be projection on the $ i $- |
| + | th factor. |
| | | |
− | Each analytic mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186031.png" /> may be related to a sheaf of relative differentials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186032.png" />. This is the analytic sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186033.png" /> inducing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186034.png" /> on each fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186035.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186036.png" />) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186037.png" />; it is defined from the exact sequence
| + | The analytic sheaf $ \pi _ {1} ( J / J ^ {2} ) = \Omega _ {X} ^ {1} $ |
| + | is known as the sheaf of analytic differential forms of the first order on $ X $. |
| + | If $ f $ |
| + | is the germ of an analytic function on $ X $, |
| + | then the germ $ \pi _ {1} ^ {*} f - \pi _ {2} ^ {*} f $ |
| + | belongs to $ J $ |
| + | and defines the element $ df $ |
| + | of $ \Omega _ {X} ^ {1} $ |
| + | known as the differential of the germ $ f $. |
| + | This defines a sheaf homomorphism of vector spaces $ d : {\mathcal O} _ {X} \rightarrow \Omega _ {X} ^ {1} $. |
| + | If $ X = k ^ {n} $, |
| + | then $ \Omega _ {X} ^ {1} $ |
| + | is the free sheaf generated by $ dx _ {1} \dots dx _ {n} $, |
| + | where $ x _ {1} \dots x _ {n} $ |
| + | are the coordinates in $ k ^ {n} $. |
| + | If $ X $ |
| + | is an analytic subspace in $ k ^ {n} $, |
| + | defined by a sheaf of ideals $ J $, |
| + | then |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186038.png" /></td> </tr></table>
| + | $$ |
| + | \Omega _ {X} ^ {1} \cong \Omega _ {k ^ {n} } ^ {1} / ( J \Omega _ {k ^ {n} } ^ {1} + dJ) \mid _ {X} . |
| + | $$ |
| | | |
− | The sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186039.png" /> is called the sheaf of germs of analytic vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186040.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186041.png" /> is a manifold, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186043.png" /> are locally free sheaves, which are naturally isomorphic to the sheaf of analytic sections of the cotangent and the tangent bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186044.png" />, respectively.
| + | Each analytic mapping $ f : X \rightarrow Y $ |
| + | may be related to a sheaf of relative differentials $ \Omega _ {X/Y} ^ {1} $. |
| + | This is the analytic sheaf $ \Omega _ {X/Y} ^ {1} $ |
| + | inducing $ \Omega _ {X _ {s} } ^ {1} $ |
| + | on each fibre $ X _ {s} $( |
| + | $ s \in Y $) |
| + | of $ f $; |
| + | it is defined from the exact sequence |
| | | |
− | The analytic sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186045.png" /> are called sheaves of analytic exterior differential forms of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186047.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186048.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186049.png" />, they are also called holomorphic forms). For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186050.png" /> one may define a sheaf homomorphism of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186051.png" />, which for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186052.png" /> coincides with the one introduced above, and which satisfies the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186053.png" />. The complex of sheaves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186054.png" /> is called the de Rham complex of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186055.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186056.png" /> is a manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186057.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186058.png" />, the de Rham complex is an exact complex of sheaves. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186059.png" /> is a Stein manifold or a real-analytic manifold, the cohomology groups of the complex of sections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186060.png" />, which is also often referred to as the de Rham complex, are isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186061.png" />.
| + | $$ |
| + | f ^ { * } \Omega _ {Y} ^ {1} \rightarrow \Omega _ {X} ^ {1} \rightarrow \Omega _ {X/Y} ^ {1} \rightarrow 0 . |
| + | $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186062.png" /> has singular points, the de Rham complex need not be exact. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186063.png" />, a sufficient condition for the exactness of the de Rham complex at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186064.png" /> is the presence of a complex-analytic contractible neighbourhood at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186065.png" />. The hyperhomology groups of the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186066.png" /> contain, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186067.png" />, the cohomology groups of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186068.png" /> with coefficients in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186069.png" /> as direct summands, and are identical with them if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186070.png" /> is smooth. The sections of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186071.png" /> are called analytic (and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186072.png" />, also holomorphic) vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186073.png" />. For any open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186074.png" /> the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186075.png" /> defines a derivation in the algebra of analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186076.png" />, acting according to the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186078.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186079.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186080.png" /> defines a local one-parameter group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186081.png" /> of automorphisms of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186082.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186083.png" /> is compact, the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186084.png" /> is globally definable.
| + | The sheaf $ \Theta _ {X} = \mathop{\rm Hom} _ { {\mathcal O} _ {X} } ( \Omega _ {X} ^ {1} , {\mathcal O} _ {X} ) $ |
| + | is called the sheaf of germs of analytic vector fields on $ X $. |
| + | If $ X $ |
| + | is a manifold, $ \Omega _ {X} ^ {1} $ |
| + | and $ \Theta _ {X} $ |
| + | are locally free sheaves, which are naturally isomorphic to the sheaf of analytic sections of the cotangent and the tangent bundle over $ X $, |
| + | respectively. |
| | | |
− | The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186085.png" /> provided with the Lie bracket is a Lie algebra over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186086.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186087.png" /> is a compact complex space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186088.png" /> is the Lie algebra of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186089.png" />. | + | The analytic sheaves $ \Omega _ {X} ^ {p} = \wedge _ { {\mathcal O} _ {X} } ^ {p} \Omega _ {X} ^ {1} $ |
| + | are called sheaves of analytic exterior differential forms of degree $ p $ |
| + | on $ X $( |
| + | if $ k = \mathbf C $, |
| + | they are also called holomorphic forms). For any $ p\geq 0 $ |
| + | one may define a sheaf homomorphism of vector spaces $ d ^ {p} : \Omega _ {X} ^ {p} \rightarrow \Omega _ {X} ^ {p+1} $, |
| + | which for $ p= 0 $ |
| + | coincides with the one introduced above, and which satisfies the condition $ d ^ {p+1} d ^ {p} = 0 $. |
| + | The complex of sheaves $ ( \Omega _ {X} ^ {*} , d) $ |
| + | is called the de Rham complex of the space $ X $. |
| + | If $ X $ |
| + | is a manifold and $ k = \mathbf C $ |
| + | or $ \mathbf R $, |
| + | the de Rham complex is an exact complex of sheaves. If $ X $ |
| + | is a Stein manifold or a real-analytic manifold, the cohomology groups of the complex of sections $ \Gamma ( \Omega _ {X} ^ {*} ) $, |
| + | which is also often referred to as the de Rham complex, are isomorphic to $ H ^ {p} ( X , k) $. |
| | | |
− | Differential operators on an analytic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186090.png" /> are defined in analogy to the differential operators on a module (cf. [[Differential operator on a module|Differential operator on a module]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186091.png" /> are analytic sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186092.png" />, then a linear differential operator of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186094.png" />, acting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186095.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186096.png" />, is a sheaf homomorphism of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186097.png" /> which extends to an analytic homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186098.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d03186099.png" /> is smooth and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860100.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860101.png" /> are locally free, this definition gives the usual concept of a differential operator on a vector bundle , [[#References|[4]]].
| + | If $ X $ |
| + | has singular points, the de Rham complex need not be exact. If $ k = \mathbf C $, |
| + | a sufficient condition for the exactness of the de Rham complex at a point $ x \in X $ |
| + | is the presence of a complex-analytic contractible neighbourhood at $ x $. |
| + | The hyperhomology groups of the complex $ \Gamma ( \Omega _ {X} ^ {*} ) $ |
| + | contain, for $ k= \mathbf C $, |
| + | the cohomology groups of the space $ X $ |
| + | with coefficients in $ \mathbf C $ |
| + | as direct summands, and are identical with them if $ X $ |
| + | is smooth. The sections of the sheaf $ \Theta _ {X} $ |
| + | are called analytic (and if $ k= \mathbf C $, |
| + | also holomorphic) vector fields on $ X $. |
| + | For any open $ U \subset X $ |
| + | the field $ Z \in \Gamma ( X , \Theta _ {X} ) $ |
| + | defines a derivation in the algebra of analytic functions $ \Gamma ( U , {\mathcal O} _ {X} ) $, |
| + | acting according to the formula $ \phi \rightarrow Z _ \phi = Z ( d \phi ) $. |
| + | If $ k= \mathbf C $ |
| + | or $ \mathbf R $, |
| + | then $ Z $ |
| + | defines a local one-parameter group $ \mathop{\rm exp} Z $ |
| + | of automorphisms of the space $ X $. |
| + | If, in addition, $ X $ |
| + | is compact, the group $ \mathop{\rm exp} Z $ |
| + | is globally definable. |
| | | |
− | The germs of the linear differential operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860102.png" /> form an analytic sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860103.png" /> with filtration | + | The space $ \Gamma ( X, \Theta _ {X} ) $ |
| + | provided with the Lie bracket is a Lie algebra over $ k $. |
| + | If $ X $ |
| + | is a compact complex space, $ \Gamma ( X, \Theta _ {X} ) $ |
| + | is the Lie algebra of the group $ \mathop{\rm Aut} X $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860104.png" /></td> </tr></table>
| + | Differential operators on an analytic space $ ( X, {\mathcal O} _ {X} ) $ |
| + | are defined in analogy to the differential operators on a module (cf. [[Differential operator on a module|Differential operator on a module]]). If $ F, G $ |
| + | are analytic sheaves on $ X $, |
| + | then a linear differential operator of order $ \leq l $, |
| + | acting from $ F $ |
| + | into $ G $, |
| + | is a sheaf homomorphism of vector spaces $ F \rightarrow G $ |
| + | which extends to an analytic homomorphism $ F \otimes \pi _ {1} ( {\mathcal O} _ {X \times X } / I ^ {l+1} ) \rightarrow G $. |
| + | If $ X $ |
| + | is smooth and $ F $ |
| + | and $ G $ |
| + | are locally free, this definition gives the usual concept of a differential operator on a vector bundle , [[#References|[4]]]. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860105.png" /> is the sheaf of germs of operators of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860106.png" />. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860107.png" /> is a filtered sheaf of associative algebras over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860108.png" /> under composition of mappings. One has
| + | The germs of the linear differential operators $ F \rightarrow G $ |
| + | form an analytic sheaf $ \mathop{\rm Diff} ( F, G) $ |
| + | with filtration |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860109.png" /></td> </tr></table>
| + | $$ |
| + | \mathop{\rm Diff} ^ {0} ( F, G) \subset \dots \subset \mathop{\rm Diff} ^ {l} ( F, G) \subset \dots , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860110.png" /></td> </tr></table> | + | where $ \mathop{\rm Diff} ^ {l} ( F, G) $ |
| + | is the sheaf of germs of operators of order $ < l $. |
| + | In particular, $ \mathop{\rm Diff} ( {\mathcal O} , {\mathcal O} ) $ |
| + | is a filtered sheaf of associative algebras over $ k $ |
| + | under composition of mappings. One has |
| | | |
− | The sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860111.png" /> was studied (for the non-smooth case) only for certain special types of singular points. In particular, it was proved in the case of an irreducible one-dimensional [[Complex space|complex space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860112.png" /> that the sheaf of algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031860/d031860113.png" /> and the corresponding sheaf of graded algebras have finite systems of generators [[#References|[5]]].
| + | $$ |
| + | \mathop{\rm Diff} ^ {0} ( F, G) \cong \mathop{\rm Hom} _ {\mathcal O} ( F, G) , |
| + | $$ |
| + | |
| + | $$ |
| + | \mathop{\rm Diff} ^ {1} ( {\mathcal O} , {\mathcal O} ) / |
| + | \mathop{\rm Diff} ^ {0} ( {\mathcal O} , {\mathcal O} ) \cong \Theta _ {X} . |
| + | $$ |
| + | |
| + | The sheaf $ \mathop{\rm Diff} ( {\mathcal O} , {\mathcal O} ) $ |
| + | was studied (for the non-smooth case) only for certain special types of singular points. In particular, it was proved in the case of an irreducible one-dimensional [[Complex space|complex space]] $ X $ |
| + | that the sheaf of algebras $ \mathop{\rm Diff} ( {\mathcal O} , {\mathcal O} ) $ |
| + | and the corresponding sheaf of graded algebras have finite systems of generators [[#References|[5]]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B. Malgrange, "Analytic spaces" ''Enseign. Math. Ser. 2'' , '''14''' : 1 (1968) pp. 1–28</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Kaup, "Infinitesimal Transformationsgruppen komplexer Räume" ''Math. Ann.'' , '''160''' : 1 (1965) pp. 72–92</TD></TR><TR><TD valign="top">[3a]</TD> <TD valign="top"> L. Schwartz, "Variedades analiticas complejas elipticas" , Univ. Nac. Colombia (1956)</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> L. Schwartz, "Ecuaciones differenciales parciales" , Univ. Nac. Colombia (1956)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Th. Bloom, "Differential operators on curves" ''Rice Univ. Stud.'' , '''59''' : 2 (1973) pp. 13–19</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Berger, R. Kiehl, E. Kunz, H.-J. Nastold, "Differentialrechnung in der analytischen Geometrie" , Springer (1967)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> G. Fischer, "Complex analytic geometry" , Springer (1976)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> B. Malgrange, "Analytic spaces" ''Enseign. Math. Ser. 2'' , '''14''' : 1 (1968) pp. 1–28</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> W. Kaup, "Infinitesimal Transformationsgruppen komplexer Räume" ''Math. Ann.'' , '''160''' : 1 (1965) pp. 72–92</TD></TR> |
| + | <TR><TD valign="top">[3a]</TD> <TD valign="top"> L. Schwartz, "Variedades analiticas complejas elipticas" , Univ. Nac. Colombia (1956)</TD></TR><TR><TD valign="top">[3b]</TD> <TD valign="top"> L. Schwartz, "Ecuaciones differenciales parciales" , Univ. Nac. Colombia (1956)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> Th. Bloom, "Differential operators on curves" ''Rice Univ. Stud.'' , '''59''' : 2 (1973) pp. 13–19</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> R. Berger, R. Kiehl, E. Kunz, H.-J. Nastold, "Differentialrechnung in der analytischen Geometrie" , Springer (1967)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> G. Fischer, "Complex analytic geometry" , Springer (1976)</TD></TR> |
| + | </table> |
A generalization of the classical calculus of differential forms and differential operators to analytic spaces. For the calculus of differential forms on complex manifolds see Differential form. Let $ ( X, {\mathcal O} _ {X} ) $
be an analytic space over a field $ k $,
let $ \Delta $
be the diagonal in $ X \times X $,
let $ J $
be the sheaf of ideals defining $ \Delta $
and generated by all germs of the form $ \pi _ {1} ^ {*} f - \pi _ {2} ^ {*} f $,
where $ f $
is an arbitrary germ from $ {\mathcal O} _ {X} $,
and let $ \pi _ {i} : X \times X \rightarrow X $
be projection on the $ i $-
th factor.
The analytic sheaf $ \pi _ {1} ( J / J ^ {2} ) = \Omega _ {X} ^ {1} $
is known as the sheaf of analytic differential forms of the first order on $ X $.
If $ f $
is the germ of an analytic function on $ X $,
then the germ $ \pi _ {1} ^ {*} f - \pi _ {2} ^ {*} f $
belongs to $ J $
and defines the element $ df $
of $ \Omega _ {X} ^ {1} $
known as the differential of the germ $ f $.
This defines a sheaf homomorphism of vector spaces $ d : {\mathcal O} _ {X} \rightarrow \Omega _ {X} ^ {1} $.
If $ X = k ^ {n} $,
then $ \Omega _ {X} ^ {1} $
is the free sheaf generated by $ dx _ {1} \dots dx _ {n} $,
where $ x _ {1} \dots x _ {n} $
are the coordinates in $ k ^ {n} $.
If $ X $
is an analytic subspace in $ k ^ {n} $,
defined by a sheaf of ideals $ J $,
then
$$
\Omega _ {X} ^ {1} \cong \Omega _ {k ^ {n} } ^ {1} / ( J \Omega _ {k ^ {n} } ^ {1} + dJ) \mid _ {X} .
$$
Each analytic mapping $ f : X \rightarrow Y $
may be related to a sheaf of relative differentials $ \Omega _ {X/Y} ^ {1} $.
This is the analytic sheaf $ \Omega _ {X/Y} ^ {1} $
inducing $ \Omega _ {X _ {s} } ^ {1} $
on each fibre $ X _ {s} $(
$ s \in Y $)
of $ f $;
it is defined from the exact sequence
$$
f ^ { * } \Omega _ {Y} ^ {1} \rightarrow \Omega _ {X} ^ {1} \rightarrow \Omega _ {X/Y} ^ {1} \rightarrow 0 .
$$
The sheaf $ \Theta _ {X} = \mathop{\rm Hom} _ { {\mathcal O} _ {X} } ( \Omega _ {X} ^ {1} , {\mathcal O} _ {X} ) $
is called the sheaf of germs of analytic vector fields on $ X $.
If $ X $
is a manifold, $ \Omega _ {X} ^ {1} $
and $ \Theta _ {X} $
are locally free sheaves, which are naturally isomorphic to the sheaf of analytic sections of the cotangent and the tangent bundle over $ X $,
respectively.
The analytic sheaves $ \Omega _ {X} ^ {p} = \wedge _ { {\mathcal O} _ {X} } ^ {p} \Omega _ {X} ^ {1} $
are called sheaves of analytic exterior differential forms of degree $ p $
on $ X $(
if $ k = \mathbf C $,
they are also called holomorphic forms). For any $ p\geq 0 $
one may define a sheaf homomorphism of vector spaces $ d ^ {p} : \Omega _ {X} ^ {p} \rightarrow \Omega _ {X} ^ {p+1} $,
which for $ p= 0 $
coincides with the one introduced above, and which satisfies the condition $ d ^ {p+1} d ^ {p} = 0 $.
The complex of sheaves $ ( \Omega _ {X} ^ {*} , d) $
is called the de Rham complex of the space $ X $.
If $ X $
is a manifold and $ k = \mathbf C $
or $ \mathbf R $,
the de Rham complex is an exact complex of sheaves. If $ X $
is a Stein manifold or a real-analytic manifold, the cohomology groups of the complex of sections $ \Gamma ( \Omega _ {X} ^ {*} ) $,
which is also often referred to as the de Rham complex, are isomorphic to $ H ^ {p} ( X , k) $.
If $ X $
has singular points, the de Rham complex need not be exact. If $ k = \mathbf C $,
a sufficient condition for the exactness of the de Rham complex at a point $ x \in X $
is the presence of a complex-analytic contractible neighbourhood at $ x $.
The hyperhomology groups of the complex $ \Gamma ( \Omega _ {X} ^ {*} ) $
contain, for $ k= \mathbf C $,
the cohomology groups of the space $ X $
with coefficients in $ \mathbf C $
as direct summands, and are identical with them if $ X $
is smooth. The sections of the sheaf $ \Theta _ {X} $
are called analytic (and if $ k= \mathbf C $,
also holomorphic) vector fields on $ X $.
For any open $ U \subset X $
the field $ Z \in \Gamma ( X , \Theta _ {X} ) $
defines a derivation in the algebra of analytic functions $ \Gamma ( U , {\mathcal O} _ {X} ) $,
acting according to the formula $ \phi \rightarrow Z _ \phi = Z ( d \phi ) $.
If $ k= \mathbf C $
or $ \mathbf R $,
then $ Z $
defines a local one-parameter group $ \mathop{\rm exp} Z $
of automorphisms of the space $ X $.
If, in addition, $ X $
is compact, the group $ \mathop{\rm exp} Z $
is globally definable.
The space $ \Gamma ( X, \Theta _ {X} ) $
provided with the Lie bracket is a Lie algebra over $ k $.
If $ X $
is a compact complex space, $ \Gamma ( X, \Theta _ {X} ) $
is the Lie algebra of the group $ \mathop{\rm Aut} X $.
Differential operators on an analytic space $ ( X, {\mathcal O} _ {X} ) $
are defined in analogy to the differential operators on a module (cf. Differential operator on a module). If $ F, G $
are analytic sheaves on $ X $,
then a linear differential operator of order $ \leq l $,
acting from $ F $
into $ G $,
is a sheaf homomorphism of vector spaces $ F \rightarrow G $
which extends to an analytic homomorphism $ F \otimes \pi _ {1} ( {\mathcal O} _ {X \times X } / I ^ {l+1} ) \rightarrow G $.
If $ X $
is smooth and $ F $
and $ G $
are locally free, this definition gives the usual concept of a differential operator on a vector bundle , [4].
The germs of the linear differential operators $ F \rightarrow G $
form an analytic sheaf $ \mathop{\rm Diff} ( F, G) $
with filtration
$$
\mathop{\rm Diff} ^ {0} ( F, G) \subset \dots \subset \mathop{\rm Diff} ^ {l} ( F, G) \subset \dots ,
$$
where $ \mathop{\rm Diff} ^ {l} ( F, G) $
is the sheaf of germs of operators of order $ < l $.
In particular, $ \mathop{\rm Diff} ( {\mathcal O} , {\mathcal O} ) $
is a filtered sheaf of associative algebras over $ k $
under composition of mappings. One has
$$
\mathop{\rm Diff} ^ {0} ( F, G) \cong \mathop{\rm Hom} _ {\mathcal O} ( F, G) ,
$$
$$
\mathop{\rm Diff} ^ {1} ( {\mathcal O} , {\mathcal O} ) /
\mathop{\rm Diff} ^ {0} ( {\mathcal O} , {\mathcal O} ) \cong \Theta _ {X} .
$$
The sheaf $ \mathop{\rm Diff} ( {\mathcal O} , {\mathcal O} ) $
was studied (for the non-smooth case) only for certain special types of singular points. In particular, it was proved in the case of an irreducible one-dimensional complex space $ X $
that the sheaf of algebras $ \mathop{\rm Diff} ( {\mathcal O} , {\mathcal O} ) $
and the corresponding sheaf of graded algebras have finite systems of generators [5].
References
[1] | B. Malgrange, "Analytic spaces" Enseign. Math. Ser. 2 , 14 : 1 (1968) pp. 1–28 |
[2] | W. Kaup, "Infinitesimal Transformationsgruppen komplexer Räume" Math. Ann. , 160 : 1 (1965) pp. 72–92 |
[3a] | L. Schwartz, "Variedades analiticas complejas elipticas" , Univ. Nac. Colombia (1956) |
[3b] | L. Schwartz, "Ecuaciones differenciales parciales" , Univ. Nac. Colombia (1956) |
[4] | R.O. Wells jr., "Differential analysis on complex manifolds" , Springer (1980) |
[5] | Th. Bloom, "Differential operators on curves" Rice Univ. Stud. , 59 : 2 (1973) pp. 13–19 |
[6] | R. Berger, R. Kiehl, E. Kunz, H.-J. Nastold, "Differentialrechnung in der analytischen Geometrie" , Springer (1967) |
[7] | G. Fischer, "Complex analytic geometry" , Springer (1976) |