Namespaces
Variants
Actions

Difference between revisions of "Conformal Euclidean space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0247501.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/C024/C.0204750 Conformal Euclidean space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A Riemannian space admitting a conformal mapping onto a Euclidean space. The curvature tensor of a conformal Euclidean space has the form
 
A Riemannian space admitting a conformal mapping onto a Euclidean space. The curvature tensor of a conformal Euclidean space has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247501.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
R _ {ijk.}  ^ {l}  = \
 +
2T _ {..k[i }  ^ {lm} p _ {j]m }  ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247502.png" /></td> </tr></table>
+
$$
 +
T _ {..ij}  ^ {km}  = \
 +
\delta _ {i}  ^ {k}
 +
\delta _ {j}  ^ {m} +
 +
\delta _ {j}  ^ {k}
 +
\delta _ {i}  ^ {m} -
 +
g  ^ {km} g _ {ij} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247503.png" /></td> </tr></table>
+
$$
 +
p _ {ij}  = \nabla _ {i} p _ {j} - {
 +
\frac{1}{2}
 +
} T _ {..ij }  ^ {km} p _ {k} p _ {m} .
 +
$$
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247504.png" />, every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247505.png" /> is a conformal Euclidean space. In order that a space with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247506.png" /> be a conformal Euclidean space, it is necessary and sufficient that there exist a tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247507.png" /> satisfying the conditions (*) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247508.png" />. Sometimes a conformal Euclidean space is called a Weyl space admitting a conformal mapping onto a Euclidean space (see [[#References|[2]]]).
+
For $  n = 2 $,  
 +
every $  V _ {n} $
 +
is a conformal Euclidean space. In order that a space with $  n > 3 $
 +
be a conformal Euclidean space, it is necessary and sufficient that there exist a tensor $  p _ {ij} $
 +
satisfying the conditions (*) and $  \nabla _ {[k }  p _ {i]j }  = 0 $.  
 +
Sometimes a conformal Euclidean space is called a Weyl space admitting a conformal mapping onto a Euclidean space (see [[#References|[2]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.A. Schouten,  D.J. Struik,  "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff  (1935)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.P. Norden,  "Spaces with an affine connection" , Nauka , Moscow-Leningrad  (1976)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.A. Schouten,  D.J. Struik,  "Einführung in die neueren Methoden der Differentialgeometrie" , '''2''' , Noordhoff  (1935)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.P. Norden,  "Spaces with an affine connection" , Nauka , Moscow-Leningrad  (1976)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The notion defined in the article above is also called a conformally Euclidean space. An alternative description of this notion is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c0247509.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475010.png" />-dimensional [[Riemannian space|Riemannian space]] with [[Riemannian metric|Riemannian metric]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475011.png" />, Levi-Civita derivation (cf. [[Levi-Civita connection|Levi-Civita connection]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475012.png" />, [[Curvature tensor|curvature tensor]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475013.png" />, Ricci transformation (cf. [[Ricci tensor|Ricci tensor]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475014.png" />, and [[Scalar curvature|scalar curvature]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475015.png" />. Then the conformal curvature tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475016.png" /> (Weyl's curvature tensor) is defined by
+
The notion defined in the article above is also called a conformally Euclidean space. An alternative description of this notion is as follows. Let $  M $
 +
be an $  n $-
 +
dimensional [[Riemannian space|Riemannian space]] with [[Riemannian metric|Riemannian metric]] $  g $,  
 +
Levi-Civita derivation (cf. [[Levi-Civita connection|Levi-Civita connection]]) $  D $,  
 +
[[Curvature tensor|curvature tensor]] $  R $,  
 +
Ricci transformation (cf. [[Ricci tensor|Ricci tensor]]) $  \mathop{\rm Ric} $,  
 +
and [[Scalar curvature|scalar curvature]] $  K $.  
 +
Then the conformal curvature tensor $  C $(
 +
Weyl's curvature tensor) is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475017.png" /></td> </tr></table>
+
$$
 +
C ( X, Y) Z  = \
 +
R ( X, Y) Z -
 +
( X \wedge Y)
 +
( L ( Z)) -
 +
L (( X \wedge Y) ( Z)) ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475018.png" /></td> </tr></table>
+
$$
 +
L ( W)  = \
 +
{
 +
\frac{1}{n - 2 }
 +
}
 +
\mathop{\rm Ric} ( W) -
 +
 
 +
\frac{K}{2 ( n - 1) ( n - 2) }
 +
W
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475019.png" /></td> </tr></table>
+
$$
 +
( X \wedge Y) ( W)  = \
 +
g ( Y, W) X - g ( X, W) Y.
 +
$$
  
Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475020.png" /> locally admits a conformal mapping onto some open set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475021.png" /> if and only if
+
Then $  M $
 +
locally admits a conformal mapping onto some open set of $  E  ^ {n} $
 +
if and only if
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475022.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475023.png" />; or
+
1) $  C = 0 $
 +
for $  n > 3 $;  
 +
or
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475025.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475026.png" />.
+
2) $  C = 0 $
 +
and $  ( D _ {X} L) ( Y) = ( D _ {Y} L) ( X) $
 +
for $  n = 3 $.
  
(See [[#References|[a1]]] for example; for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475027.png" /> the  "Codazzi equationCodazzi equation"  for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024750/c02475028.png" /> is satisfied automatically.) The coordinate expressions for the equations given above can be found in the book of J.A. Schouten [[#References|[a2]]].
+
(See [[#References|[a1]]] for example; for $  n > 3 $
 +
the  "Codazzi equationCodazzi equation"  for $  L $
 +
is satisfied automatically.) The coordinate expressions for the equations given above can be found in the book of J.A. Schouten [[#References|[a2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Yano,  "The theory of Lie derivatives and its applications" , North-Holland  (1957)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.A. Schouten,  "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer  (1954)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Yano,  "The theory of Lie derivatives and its applications" , North-Holland  (1957)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.A. Schouten,  "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer  (1954)  (Translated from German)</TD></TR></table>

Latest revision as of 17:46, 4 June 2020


A Riemannian space admitting a conformal mapping onto a Euclidean space. The curvature tensor of a conformal Euclidean space has the form

$$ \tag{* } R _ {ijk.} ^ {l} = \ 2T _ {..k[i } ^ {lm} p _ {j]m } , $$

where

$$ T _ {..ij} ^ {km} = \ \delta _ {i} ^ {k} \delta _ {j} ^ {m} + \delta _ {j} ^ {k} \delta _ {i} ^ {m} - g ^ {km} g _ {ij} , $$

$$ p _ {ij} = \nabla _ {i} p _ {j} - { \frac{1}{2} } T _ {..ij } ^ {km} p _ {k} p _ {m} . $$

For $ n = 2 $, every $ V _ {n} $ is a conformal Euclidean space. In order that a space with $ n > 3 $ be a conformal Euclidean space, it is necessary and sufficient that there exist a tensor $ p _ {ij} $ satisfying the conditions (*) and $ \nabla _ {[k } p _ {i]j } = 0 $. Sometimes a conformal Euclidean space is called a Weyl space admitting a conformal mapping onto a Euclidean space (see [2]).

References

[1] J.A. Schouten, D.J. Struik, "Einführung in die neueren Methoden der Differentialgeometrie" , 2 , Noordhoff (1935)
[2] A.P. Norden, "Spaces with an affine connection" , Nauka , Moscow-Leningrad (1976) (In Russian)

Comments

The notion defined in the article above is also called a conformally Euclidean space. An alternative description of this notion is as follows. Let $ M $ be an $ n $- dimensional Riemannian space with Riemannian metric $ g $, Levi-Civita derivation (cf. Levi-Civita connection) $ D $, curvature tensor $ R $, Ricci transformation (cf. Ricci tensor) $ \mathop{\rm Ric} $, and scalar curvature $ K $. Then the conformal curvature tensor $ C $( Weyl's curvature tensor) is defined by

$$ C ( X, Y) Z = \ R ( X, Y) Z - ( X \wedge Y) ( L ( Z)) - L (( X \wedge Y) ( Z)) , $$

where

$$ L ( W) = \ { \frac{1}{n - 2 } } \mathop{\rm Ric} ( W) - \frac{K}{2 ( n - 1) ( n - 2) } W $$

and

$$ ( X \wedge Y) ( W) = \ g ( Y, W) X - g ( X, W) Y. $$

Then $ M $ locally admits a conformal mapping onto some open set of $ E ^ {n} $ if and only if

1) $ C = 0 $ for $ n > 3 $; or

2) $ C = 0 $ and $ ( D _ {X} L) ( Y) = ( D _ {Y} L) ( X) $ for $ n = 3 $.

(See [a1] for example; for $ n > 3 $ the "Codazzi equationCodazzi equation" for $ L $ is satisfied automatically.) The coordinate expressions for the equations given above can be found in the book of J.A. Schouten [a2].

References

[a1] K. Yano, "The theory of Lie derivatives and its applications" , North-Holland (1957)
[a2] J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) (Translated from German)
How to Cite This Entry:
Conformal Euclidean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Conformal_Euclidean_space&oldid=14002
This article was adapted from an original article by G.V. Bushmanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article