Namespaces
Variants
Actions

Difference between revisions of "Alexander-Conway polynomial"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(→‎References: zbl link)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
The normalized version of the Alexander polynomial (cf. also [[Alexander invariants|Alexander invariants]]). It satisfies the Conway skein relation (cf. also [[Conway skein triple|Conway skein triple]])
+
{{TEX|done}}
 +
The normalized version of the Alexander polynomial (cf. also [[Alexander invariants]]). It satisfies the Conway skein relation (cf. also [[Conway skein triple]])
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130150/a1301501.png" /></td> </tr></table>
+
$$\Delta_{L_+}-\Delta_{L_-}=z\Delta_{L_0}$$
  
and the initial condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130150/a1301502.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130150/a1301503.png" /> is the trivial knot (cf. also [[Knot theory|Knot theory]]). For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130150/a1301504.png" /> one gets the original Alexander polynomial (defined only up to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130150/a1301505.png" />).
+
and the initial condition $\Delta_{T_1}=1$, where $T_1$ is the trivial knot (cf. also [[Knot theory]]). For $z=\sqrt t-1/\sqrt t$ one gets the original Alexander polynomial (defined only up to $\pm t^i$).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Alexander,   "Topological invariants of knots and links"  ''Trans. Amer. Math. Soc.'' , '''30'''  (1928)  pp. 275–306</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.H. Conway,   "An enumeration of knots and links"  J. Leech (ed.) , ''Computational problems in abstract algebra'' , Pergamon  (1969)  pp. 329–358</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.H. Kauffman,   "The Conway polynomial"  ''Topology'' , '''20''' :  1  (1981)  pp. 101–108</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> J.W. Alexander, "Topological invariants of knots and links"  ''Trans. Amer. Math. Soc.'' , '''30'''  (1928)  pp. 275–306 {{ZBL|54.0603.03}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top"> J.H. Conway, "An enumeration of knots and links"  J. Leech (ed.) , ''Computational problems in abstract algebra'' , Pergamon  (1969)  pp. 329–358 {{ZBL|0202.54703}}</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top"> L.H. Kauffman, "The Conway polynomial"  ''Topology'' , '''20''' :  1  (1981)  pp. 101–108 {{ZBL|0456.57004}}</TD></TR>
 +
</table>
 +
 
 +
[[Category:Algebraic topology]]

Latest revision as of 16:58, 18 May 2024

The normalized version of the Alexander polynomial (cf. also Alexander invariants). It satisfies the Conway skein relation (cf. also Conway skein triple)

$$\Delta_{L_+}-\Delta_{L_-}=z\Delta_{L_0}$$

and the initial condition $\Delta_{T_1}=1$, where $T_1$ is the trivial knot (cf. also Knot theory). For $z=\sqrt t-1/\sqrt t$ one gets the original Alexander polynomial (defined only up to $\pm t^i$).

References

[a1] J.W. Alexander, "Topological invariants of knots and links" Trans. Amer. Math. Soc. , 30 (1928) pp. 275–306 Zbl 54.0603.03
[a2] J.H. Conway, "An enumeration of knots and links" J. Leech (ed.) , Computational problems in abstract algebra , Pergamon (1969) pp. 329–358 Zbl 0202.54703
[a3] L.H. Kauffman, "The Conway polynomial" Topology , 20 : 1 (1981) pp. 101–108 Zbl 0456.57004
How to Cite This Entry:
Alexander-Conway polynomial. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Alexander-Conway_polynomial&oldid=13748
This article was adapted from an original article by Jozef Przytycki (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article