|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | A [[Characteristic number|characteristic number]] of a quasi-complex manifold. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220401.png" /> be an arbitrary characteristic class. For a closed quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220402.png" /> the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220403.png" /> is called the Chern number of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220404.png" /> corresponding to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220405.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220406.png" /> is the [[Fundamental class|fundamental class]] of the manifold, or the orientation, uniquely determined by the quasi-complex structure, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220407.png" /> is the tangent bundle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220408.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c0220409.png" /> is taken to be a characteristic class with rational coefficients, then the corresponding Chern number will be rational. The Chern number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204010.png" /> depends only on the homogeneous component of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204011.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204012.png" />. The Chern numbers are quasi-complex bordism invariants, and hence the characteristic class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204013.png" /> induces a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204014.png" />.
| + | <!-- |
| + | c0220401.png |
| + | $#A+1 = 116 n = 0 |
| + | $#C+1 = 116 : ~/encyclopedia/old_files/data/C022/C.0202040 Chern number |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A partition of a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204015.png" /> is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204016.png" /> of non-negative integers with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204018.png" /> are two quasi-complex manifolds of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204019.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204020.png" /> (cf. [[Chern class|Chern class]]) for all partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204022.png" />, then the manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204023.png" /> are cobordant (in the quasi-complex sense).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204024.png" /> be a free Abelian group with basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204025.png" /> in one-to-one correspondence with the set of all partitions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204026.png" />. The cited theorem asserts that the homomorphism | + | A [[Characteristic number|characteristic number]] of a quasi-complex manifold. Let $ x \in H ^ {**} ( \mathop{\rm BU} _ {n} ) $ |
| + | be an arbitrary characteristic class. For a closed quasi-complex manifold $ M ^ {2n} $ |
| + | the integer $ x [ M ^ {2n} ] = \langle x ( \tau M ) , [ M ^ {2n} ] \rangle $ |
| + | is called the Chern number of the manifold $ M ^ {2n} $ |
| + | corresponding to the class $ x $. |
| + | Here $ [ M ^ {2n} ] \in H _ {2n} ( M ^ {2n} ) $ |
| + | is the [[Fundamental class|fundamental class]] of the manifold, or the orientation, uniquely determined by the quasi-complex structure, and $ \tau M $ |
| + | is the tangent bundle of $ M $. |
| + | If $ x $ |
| + | is taken to be a characteristic class with rational coefficients, then the corresponding Chern number will be rational. The Chern number $ x [ M ^ {2n} ] $ |
| + | depends only on the homogeneous component of $ x $ |
| + | of degree $ 2n $. |
| + | The Chern numbers are quasi-complex bordism invariants, and hence the characteristic class $ x $ |
| + | induces a homomorphism $ \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204027.png" /></td> </tr></table>
| + | A partition of a number $ n $ |
| + | is a set $ \omega = \{ i _ {1} \dots i _ {k} \} $ |
| + | of non-negative integers with $ i _ {1} + \dots + i _ {k} = n $. |
| + | If $ M , N $ |
| + | are two quasi-complex manifolds of dimension $ 2n $ |
| + | such that $ c _ \omega [ M] = c _ \omega [ N ] $( |
| + | cf. [[Chern class|Chern class]]) for all partitions $ \omega $ |
| + | of $ n $, |
| + | then the manifolds $ M , N $ |
| + | are cobordant (in the quasi-complex sense). |
| | | |
− | is a monomorphism. Below a description of the image of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204028.png" /> is given (the Milnor–Hirzebruch problem). In other words, which sets of integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204029.png" />, defined for all partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204030.png" /> of a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204031.png" />, arise as the Chern numbers of quasi-complex manifolds? A Chern number can be defined in an arbitrary multiplicative oriented cohomology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204032.png" />, except that in this case the Chern number of a quasi-complex manifold will be an element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204033.png" />. Dual to the cohomology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204034.png" /> is a homology theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204035.png" />, and since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204036.png" /> is oriented and multiplicative, there is for each quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204037.png" /> a unique fundamental class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204038.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204039.png" />. Moreover, as in the ordinary theory there is a pairing
| + | Let $ A $ |
| + | be a free Abelian group with basis $ \{ e _ \omega \} = \{ e _ {i _ {1} \dots i _ {k} } \} $ |
| + | in one-to-one correspondence with the set of all partitions of $ n $. |
| + | The cited theorem asserts that the homomorphism |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204040.png" /></td> </tr></table>
| + | $$ |
| + | \phi : \Omega _ {2n} ^ {u} \rightarrow A ,\ \ |
| + | \phi ( [ M ^ {2n} ] ) = \sum _ \omega c _ \omega [ M ^ {2n} ] e _ \omega $$ |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204041.png" />, then the application of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204042.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204043.png" /> with respect to this pairing is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204044.png" />. For a characteristic class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204045.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204046.png" /> and a closed quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204047.png" />, the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204048.png" /> is called the Chern number in the theory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204049.png" />. The preceding considerations apply also to [[K-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204050.png" />-theory]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204051.png" /> be a quasi-complex manifold (possibly with boundary), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204052.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204053.png" /> be an arbitrary element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204054.png" />. Then the integer
| + | is a monomorphism. Below a description of the image of the homomorphism $ \phi $ |
| + | is given (the Milnor–Hirzebruch problem). In other words, which sets of integers $ a _ \omega = a _ {i _ {1} \dots i _ {k} } $, |
| + | defined for all partitions $ \omega $ |
| + | of a number $ n $, |
| + | arise as the Chern numbers of quasi-complex manifolds? A Chern number can be defined in an arbitrary multiplicative oriented cohomology theory $ h ^ {*} $, |
| + | except that in this case the Chern number of a quasi-complex manifold will be an element of the ring $ h ^ {*} ( \mathop{\rm pt} ) $. |
| + | Dual to the cohomology theory $ h ^ {*} $ |
| + | is a homology theory $ h _ {*} $, |
| + | and since $ h ^ {*} $ |
| + | is oriented and multiplicative, there is for each quasi-complex manifold $ M $ |
| + | a unique fundamental class $ [ M , \partial M ] ^ {h} \in h _ {2n} ( M , \partial M ) $, |
| + | where $ 2n = \mathop{\rm dim} M $. |
| + | Moreover, as in the ordinary theory there is a pairing |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204055.png" /></td> </tr></table>
| + | $$ |
| + | h ^ {n} ( M , \partial M ) \otimes h _ {m} ( M ,\ |
| + | \partial M ) \rightarrow h ^ {n-m} ( \mathop{\rm pt} ) . |
| + | $$ |
| + | |
| + | If $ x \in H ^ {*} ( M , \partial M ) $, |
| + | then the application of $ x $ |
| + | to $ [ M , \partial M ] ^ {h} $ |
| + | with respect to this pairing is denoted by $ \{ x , [ M , \partial M ] ^ {h} \} \in h ^ {*} ( \mathop{\rm pt} ) $. |
| + | For a characteristic class $ y $ |
| + | with values in $ h ^ {*} $ |
| + | and a closed quasi-complex manifold $ M $, |
| + | the element $ \{ y ( \tau M ) , [ M ] ^ {h} \} $ |
| + | is called the Chern number in the theory $ h ^ {*} $. |
| + | The preceding considerations apply also to [[K-theory| $ K $- |
| + | theory]]. Let $ M $ |
| + | be a quasi-complex manifold (possibly with boundary), let $ \mathop{\rm dim} _ {\mathbf R } M = 2n $ |
| + | and let $ x $ |
| + | be an arbitrary element of $ K ^ {0} ( M , \partial M ) $. |
| + | Then the integer |
| + | |
| + | $$ |
| + | \{ x , [ M , \partial M ] ^ {k} \} \in K ^ {-2n} |
| + | ( \mathop{\rm pt} ) \cong ^ { {\beta ^ {n}} } K ^ {0} ( \mathop{\rm pt} ) = \mathbf Z |
| + | $$ |
| | | |
| can be computed according to the formula | | can be computed according to the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204056.png" /></td> </tr></table>
| + | $$ |
| + | \{ x , [ M , \partial M ] ^ {k} \} = \ |
| + | \langle \mathop{\rm ch} x T ( \tau M ) , [ M , \partial M ] \rangle , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204057.png" /> is the [[Todd class|Todd class]] given by the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204058.png" />. If the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204059.png" /> is closed, then putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204060.png" /> one obtains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204061.png" />. The characteristic number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204062.png" /> is called the Todd genus of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204063.png" /> and is an integer for any quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204064.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204065.png" /> is often denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204066.png" />. | + | where $ T $ |
| + | is the [[Todd class]] given by the series $\prod_{i=1}^ {n} x _ {i} / ( 1 - e ^ {x _ {i} } ) $. |
| + | If the manifold $ M $ |
| + | is closed, then putting $ x = 1 \in K ^ {0} ( M) $ |
| + | one obtains $ \{ 1 , [ M ] ^ {k} \} = T [ M] $. |
| + | The characteristic number $ T [ M ] $ |
| + | is called the Todd genus of the manifold $ M $ |
| + | and is an integer for any quasi-complex manifold $ M $. |
| + | $ T [ M ] $ |
| + | is often denoted by $ \mathop{\rm Td} ( M) $. |
| | | |
− | One of the most important examples of a quasi-complex manifold is a tangent manifold. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204067.png" /> be a closed real manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204068.png" />. The manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204069.png" /> of all tangent vectors to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204070.png" /> has a natural quasi-complex structure: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204071.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204072.png" />. Fix a Riemannian metric on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204073.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204074.png" /> denote the manifold with boundary consisting of all vectors of length not exceeding one. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204075.png" />, then the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204076.png" /> is called the topological index of the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204078.png" /> is the class of the symbol of an elliptic operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204079.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204080.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204081.png" /> (the Atiyah–Singer theorem), and applying the above formula for computing the integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204082.png" /> leads to the cohomological form of the index theorem. | + | One of the most important examples of a quasi-complex manifold is a tangent manifold. Let $ N $ |
| + | be a closed real manifold of dimension $ n $. |
| + | The manifold $ TN $ |
| + | of all tangent vectors to $ N $ |
| + | has a natural quasi-complex structure: $ \tau T N = \tau N \oplus N $, |
| + | $ i ( x , y ) = ( y , - x ) $. |
| + | Fix a Riemannian metric on $ N $ |
| + | and let $ BN \subset TN $ |
| + | denote the manifold with boundary consisting of all vectors of length not exceeding one. If $ \sigma \in K ^ {0} ( BN , \partial BN ) $, |
| + | then the integer $ i _ {t} ( \sigma ) = \{ \sigma , [ BN , \partial BN ] ^ {k} \} $ |
| + | is called the topological index of the element $ \sigma $. |
| + | If $ \sigma $ |
| + | is the class of the symbol of an elliptic operator $ D $ |
| + | defined on $ N $, |
| + | then $ \textrm{ index } D = i _ {t} ( \sigma ) $( |
| + | the Atiyah–Singer theorem), and applying the above formula for computing the integer $ \{ x , [ M , \partial M ] ^ {k} \} $ |
| + | leads to the cohomological form of the index theorem. |
| | | |
− | For a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204083.png" /> of non-negative integers and a closed quasi-complex manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204084.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204085.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204086.png" /> be the Chern number in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204087.png" />-theory: | + | For a set $ \omega = \{ i _ {1} \dots i _ {n} \} $ |
| + | of non-negative integers and a closed quasi-complex manifold $ M $ |
| + | of dimension $ 2n $, |
| + | let $ S _ \omega ^ {k} [ M] $ |
| + | be the Chern number in $ K $- |
| + | theory: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204088.png" /></td> </tr></table>
| + | $$ |
| + | S _ \omega ^ {k} [ M] = S _ \omega ( \gamma _ {1} \dots |
| + | \gamma _ {n} ) [ M] = |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204089.png" /></td> </tr></table>
| + | $$ |
| + | = \ |
| + | \{ S _ \omega ( \gamma _ {1} \dots \gamma _ {n} ) ( \tau M ) , [ M] ^ {k} \} , |
| + | $$ |
| | | |
− | and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204090.png" /> be the ordinary Chern number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204091.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204092.png" /> can be distinct from zero only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204093.png" /> is a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204094.png" />. The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204095.png" /> can be distinct from zero for sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204096.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204097.png" />. Any homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204098.png" /> can be expressed as a linear combination with integer coefficients of homomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c02204099.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040100.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040101.png" /> (the Stong–Hattori theorem). The characteristic numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040102.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040103.png" /> can be expressed in the form | + | and let $ S _ \omega [ M] $ |
| + | be the ordinary Chern number $ S _ \omega ( c _ {1} \dots c _ {n} ) [ M] $. |
| + | The number $ S _ \omega [ M] $ |
| + | can be distinct from zero only if $ \omega $ |
| + | is a partition of $ n $. |
| + | The number $ S _ \omega ^ {k} [ M] $ |
| + | can be distinct from zero for sets $ \omega = \{ i _ {1} \dots i _ {k} \} $ |
| + | with $ i _ {1} + \dots + i _ {k} \leq n $. |
| + | Any homomorphisms $ \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $ |
| + | can be expressed as a linear combination with integer coefficients of homomorphisms $ S _ \omega ^ {k} : \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $, |
| + | with $ | \omega | \leq n $, |
| + | where $ | \omega | = i _ {1} + \dots i _ {k} $( |
| + | the Stong–Hattori theorem). The characteristic numbers $ S _ \omega ^ {k} [ M] $ |
| + | with $ | \omega | \leq n $ |
| + | can be expressed in the form |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040104.png" /></td> </tr></table>
| + | $$ |
| + | S _ \omega ^ {k} [ M] = \sum _ |
| + | {| \omega ^ \prime | = n } r _ {\omega ^ \prime } c _ {\omega ^ \prime } [ M] , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040105.png" /> are rational coefficients and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040106.png" /> is any closed quasi-complex manifold of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040107.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040108.png" /> be an arbitrary element of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040110.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040111.png" />. Then the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040112.png" /> lies in the image of the homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040113.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040114.png" /> is an integer for all sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040115.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c022/c022040/c022040116.png" />. | + | where $ r _ {\omega ^ \prime } $ |
| + | are rational coefficients and $ M $ |
| + | is any closed quasi-complex manifold of dimension $ 2n $. |
| + | Let $ a $ |
| + | be an arbitrary element of the group $ A $, |
| + | $ a= \sum _ {| \omega ^ \prime | = n } a _ {\omega ^ \prime } e _ {\omega ^ \prime } $ |
| + | and let $ S _ \omega ^ {k} ( a) = \sum _ {| \omega ^ \prime | = n } r _ {\omega ^ \prime } a _ {\omega ^ \prime } $. |
| + | Then the element $ a \in A $ |
| + | lies in the image of the homomorphism $ \phi : \Omega _ {2n} ^ {u} \rightarrow A $ |
| + | if and only if $ S _ \omega ^ {k} $ |
| + | is an integer for all sets $ \omega $ |
| + | with $ | \omega | \leq n $. |
| | | |
| For references see [[Chern class|Chern class]]. | | For references see [[Chern class|Chern class]]. |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
| Cf. [[Cobordism|Cobordism]] for the notions "quasi-complex manifold" and "complex-oriented cohomology theory" . Cf. also the comments to [[Chern class|Chern class]]. | | Cf. [[Cobordism|Cobordism]] for the notions "quasi-complex manifold" and "complex-oriented cohomology theory" . Cf. also the comments to [[Chern class|Chern class]]. |
A characteristic number of a quasi-complex manifold. Let $ x \in H ^ {**} ( \mathop{\rm BU} _ {n} ) $
be an arbitrary characteristic class. For a closed quasi-complex manifold $ M ^ {2n} $
the integer $ x [ M ^ {2n} ] = \langle x ( \tau M ) , [ M ^ {2n} ] \rangle $
is called the Chern number of the manifold $ M ^ {2n} $
corresponding to the class $ x $.
Here $ [ M ^ {2n} ] \in H _ {2n} ( M ^ {2n} ) $
is the fundamental class of the manifold, or the orientation, uniquely determined by the quasi-complex structure, and $ \tau M $
is the tangent bundle of $ M $.
If $ x $
is taken to be a characteristic class with rational coefficients, then the corresponding Chern number will be rational. The Chern number $ x [ M ^ {2n} ] $
depends only on the homogeneous component of $ x $
of degree $ 2n $.
The Chern numbers are quasi-complex bordism invariants, and hence the characteristic class $ x $
induces a homomorphism $ \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $.
A partition of a number $ n $
is a set $ \omega = \{ i _ {1} \dots i _ {k} \} $
of non-negative integers with $ i _ {1} + \dots + i _ {k} = n $.
If $ M , N $
are two quasi-complex manifolds of dimension $ 2n $
such that $ c _ \omega [ M] = c _ \omega [ N ] $(
cf. Chern class) for all partitions $ \omega $
of $ n $,
then the manifolds $ M , N $
are cobordant (in the quasi-complex sense).
Let $ A $
be a free Abelian group with basis $ \{ e _ \omega \} = \{ e _ {i _ {1} \dots i _ {k} } \} $
in one-to-one correspondence with the set of all partitions of $ n $.
The cited theorem asserts that the homomorphism
$$
\phi : \Omega _ {2n} ^ {u} \rightarrow A ,\ \
\phi ( [ M ^ {2n} ] ) = \sum _ \omega c _ \omega [ M ^ {2n} ] e _ \omega $$
is a monomorphism. Below a description of the image of the homomorphism $ \phi $
is given (the Milnor–Hirzebruch problem). In other words, which sets of integers $ a _ \omega = a _ {i _ {1} \dots i _ {k} } $,
defined for all partitions $ \omega $
of a number $ n $,
arise as the Chern numbers of quasi-complex manifolds? A Chern number can be defined in an arbitrary multiplicative oriented cohomology theory $ h ^ {*} $,
except that in this case the Chern number of a quasi-complex manifold will be an element of the ring $ h ^ {*} ( \mathop{\rm pt} ) $.
Dual to the cohomology theory $ h ^ {*} $
is a homology theory $ h _ {*} $,
and since $ h ^ {*} $
is oriented and multiplicative, there is for each quasi-complex manifold $ M $
a unique fundamental class $ [ M , \partial M ] ^ {h} \in h _ {2n} ( M , \partial M ) $,
where $ 2n = \mathop{\rm dim} M $.
Moreover, as in the ordinary theory there is a pairing
$$
h ^ {n} ( M , \partial M ) \otimes h _ {m} ( M ,\
\partial M ) \rightarrow h ^ {n-m} ( \mathop{\rm pt} ) .
$$
If $ x \in H ^ {*} ( M , \partial M ) $,
then the application of $ x $
to $ [ M , \partial M ] ^ {h} $
with respect to this pairing is denoted by $ \{ x , [ M , \partial M ] ^ {h} \} \in h ^ {*} ( \mathop{\rm pt} ) $.
For a characteristic class $ y $
with values in $ h ^ {*} $
and a closed quasi-complex manifold $ M $,
the element $ \{ y ( \tau M ) , [ M ] ^ {h} \} $
is called the Chern number in the theory $ h ^ {*} $.
The preceding considerations apply also to $ K $-
theory. Let $ M $
be a quasi-complex manifold (possibly with boundary), let $ \mathop{\rm dim} _ {\mathbf R } M = 2n $
and let $ x $
be an arbitrary element of $ K ^ {0} ( M , \partial M ) $.
Then the integer
$$
\{ x , [ M , \partial M ] ^ {k} \} \in K ^ {-2n}
( \mathop{\rm pt} ) \cong ^ { {\beta ^ {n}} } K ^ {0} ( \mathop{\rm pt} ) = \mathbf Z
$$
can be computed according to the formula
$$
\{ x , [ M , \partial M ] ^ {k} \} = \
\langle \mathop{\rm ch} x T ( \tau M ) , [ M , \partial M ] \rangle ,
$$
where $ T $
is the Todd class given by the series $\prod_{i=1}^ {n} x _ {i} / ( 1 - e ^ {x _ {i} } ) $.
If the manifold $ M $
is closed, then putting $ x = 1 \in K ^ {0} ( M) $
one obtains $ \{ 1 , [ M ] ^ {k} \} = T [ M] $.
The characteristic number $ T [ M ] $
is called the Todd genus of the manifold $ M $
and is an integer for any quasi-complex manifold $ M $.
$ T [ M ] $
is often denoted by $ \mathop{\rm Td} ( M) $.
One of the most important examples of a quasi-complex manifold is a tangent manifold. Let $ N $
be a closed real manifold of dimension $ n $.
The manifold $ TN $
of all tangent vectors to $ N $
has a natural quasi-complex structure: $ \tau T N = \tau N \oplus N $,
$ i ( x , y ) = ( y , - x ) $.
Fix a Riemannian metric on $ N $
and let $ BN \subset TN $
denote the manifold with boundary consisting of all vectors of length not exceeding one. If $ \sigma \in K ^ {0} ( BN , \partial BN ) $,
then the integer $ i _ {t} ( \sigma ) = \{ \sigma , [ BN , \partial BN ] ^ {k} \} $
is called the topological index of the element $ \sigma $.
If $ \sigma $
is the class of the symbol of an elliptic operator $ D $
defined on $ N $,
then $ \textrm{ index } D = i _ {t} ( \sigma ) $(
the Atiyah–Singer theorem), and applying the above formula for computing the integer $ \{ x , [ M , \partial M ] ^ {k} \} $
leads to the cohomological form of the index theorem.
For a set $ \omega = \{ i _ {1} \dots i _ {n} \} $
of non-negative integers and a closed quasi-complex manifold $ M $
of dimension $ 2n $,
let $ S _ \omega ^ {k} [ M] $
be the Chern number in $ K $-
theory:
$$
S _ \omega ^ {k} [ M] = S _ \omega ( \gamma _ {1} \dots
\gamma _ {n} ) [ M] =
$$
$$
= \
\{ S _ \omega ( \gamma _ {1} \dots \gamma _ {n} ) ( \tau M ) , [ M] ^ {k} \} ,
$$
and let $ S _ \omega [ M] $
be the ordinary Chern number $ S _ \omega ( c _ {1} \dots c _ {n} ) [ M] $.
The number $ S _ \omega [ M] $
can be distinct from zero only if $ \omega $
is a partition of $ n $.
The number $ S _ \omega ^ {k} [ M] $
can be distinct from zero for sets $ \omega = \{ i _ {1} \dots i _ {k} \} $
with $ i _ {1} + \dots + i _ {k} \leq n $.
Any homomorphisms $ \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $
can be expressed as a linear combination with integer coefficients of homomorphisms $ S _ \omega ^ {k} : \Omega _ {2n} ^ {u} \rightarrow \mathbf Z $,
with $ | \omega | \leq n $,
where $ | \omega | = i _ {1} + \dots i _ {k} $(
the Stong–Hattori theorem). The characteristic numbers $ S _ \omega ^ {k} [ M] $
with $ | \omega | \leq n $
can be expressed in the form
$$
S _ \omega ^ {k} [ M] = \sum _
{| \omega ^ \prime | = n } r _ {\omega ^ \prime } c _ {\omega ^ \prime } [ M] ,
$$
where $ r _ {\omega ^ \prime } $
are rational coefficients and $ M $
is any closed quasi-complex manifold of dimension $ 2n $.
Let $ a $
be an arbitrary element of the group $ A $,
$ a= \sum _ {| \omega ^ \prime | = n } a _ {\omega ^ \prime } e _ {\omega ^ \prime } $
and let $ S _ \omega ^ {k} ( a) = \sum _ {| \omega ^ \prime | = n } r _ {\omega ^ \prime } a _ {\omega ^ \prime } $.
Then the element $ a \in A $
lies in the image of the homomorphism $ \phi : \Omega _ {2n} ^ {u} \rightarrow A $
if and only if $ S _ \omega ^ {k} $
is an integer for all sets $ \omega $
with $ | \omega | \leq n $.
For references see Chern class.
Cf. Cobordism for the notions "quasi-complex manifold" and "complex-oriented cohomology theory" . Cf. also the comments to Chern class.