|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | c1102601.png |
| + | $#A+1 = 109 n = 0 |
| + | $#C+1 = 109 : ~/encyclopedia/old_files/data/C110/C.1100260 Clifford theory |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''(for group representations)'' | | ''(for group representations)'' |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102601.png" /> be a [[Normal subgroup|normal subgroup]] of a [[Finite group|finite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102602.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102603.png" /> be the [[Group algebra|group algebra]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102604.png" /> over a [[Commutative ring|commutative ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102605.png" />. Given an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102606.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102607.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102608.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c1102609.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026010.png" />-module whose underlying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026011.png" />-module is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026012.png" /> and on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026013.png" /> acts according to the rule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026015.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026016.png" /> denotes the module operation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026018.png" /> the operation in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026019.png" />. By definition, the inertia group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026021.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026022.png" />. It is clear that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026023.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026024.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026025.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026026.png" />, it is customary to say that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026027.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026029.png" />-invariant | + | Let $ N $ |
| + | be a [[Normal subgroup|normal subgroup]] of a [[Finite group|finite group]] $ G $ |
| + | and let $ RG $ |
| + | be the [[Group algebra|group algebra]] of $ G $ |
| + | over a [[Commutative ring|commutative ring]] $ R $. |
| + | Given an $ RN $- |
| + | module $ V $ |
| + | and $ g \in G $, |
| + | let $ ^ {g} V $ |
| + | be the $ RN $- |
| + | module whose underlying $ R $- |
| + | module is $ V $ |
| + | and on which $ N $ |
| + | acts according to the rule $ n * v = ( g ^ {- 1 } ng ) v $, |
| + | $ v \in V $, |
| + | where $ n * v $ |
| + | denotes the module operation in $ ^ {g} V $ |
| + | and $ nv $ |
| + | the operation in $ V $. |
| + | By definition, the inertia group $ H $ |
| + | of $ V $ |
| + | is $ H = \{ {g \in G } : {V \cong ^ {g} V } \} $. |
| + | It is clear that $ H $ |
| + | is a subgroup of $ G $ |
| + | containing $ N $; |
| + | if $ H = G $, |
| + | it is customary to say that $ V $ |
| + | is $ G $- |
| + | invariant |
| | | |
− | Important information concerning simple and indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026030.png" />-modules can be obtained by applying (perhaps repeatedly) three basic operations: | + | Important information concerning simple and indecomposable $ RG $- |
| + | modules can be obtained by applying (perhaps repeatedly) three basic operations: |
| | | |
− | i) restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026031.png" />; | + | i) restriction to $ RN $; |
| | | |
− | ii) extension from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026032.png" />; and | + | ii) extension from $ RN $; |
| + | and |
| | | |
− | iii) induction from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026033.png" />. This is the content of the so-called Clifford theory, which was originally developed by A.H. Clifford (see [[#References|[a1]]]) for the classical case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026034.png" /> is a [[Field|field]]. General references for this area are [[#References|[a2]]], [[#References|[a3]]]. | + | iii) induction from $ RN $. |
| + | This is the content of the so-called Clifford theory, which was originally developed by A.H. Clifford (see [[#References|[a1]]]) for the classical case where $ R $ |
| + | is a [[Field|field]]. General references for this area are [[#References|[a2]]], [[#References|[a3]]]. |
| | | |
| The most important results are as follows. | | The most important results are as follows. |
| | | |
| ==Restriction to normal subgroups of representations.== | | ==Restriction to normal subgroups of representations.== |
− | Given a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026035.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026036.png" /> and an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026037.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026038.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026039.png" /> denote the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026040.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026042.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026043.png" />-module, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026044.png" /> denotes the induced module. For any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026045.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026046.png" /> be the direct sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026047.png" /> copies of a given module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026048.png" />. A classical Clifford theorem, originally proved for the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026049.png" /> is a field, holds for an arbitrary commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026050.png" /> and asserts the following. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026051.png" /> is a simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026052.png" />-module. Then there exists a simple submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026053.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026054.png" />; for any such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026055.png" /> and the inertia group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026056.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026057.png" />, the following properties hold. | + | Given a subgroup $ H $ |
| + | of $ G $ |
| + | and an $ RG $- |
| + | module $ U $, |
| + | let $ U _ {H} $ |
| + | denote the restriction of $ U $ |
| + | to $ RH $. |
| + | If $ V $ |
| + | is an $ RH $- |
| + | module, then $ V ^ {G} $ |
| + | denotes the induced module. For any integer $ e \geq 1 $, |
| + | let $ eV $ |
| + | be the direct sum of $ e $ |
| + | copies of a given module $ V $. |
| + | A classical Clifford theorem, originally proved for the case where $ R $ |
| + | is a field, holds for an arbitrary commutative ring $ R $ |
| + | and asserts the following. Assume that $ U $ |
| + | is a simple $ RG $- |
| + | module. Then there exists a simple submodule $ V $ |
| + | of $ U _ {N} $; |
| + | for any such $ V $ |
| + | and the inertia group $ H $ |
| + | of $ V $, |
| + | the following properties hold. |
| | | |
− | a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026058.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026059.png" /> is a left transversal for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026060.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026061.png" />. Moreover, the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026063.png" />, are pairwise non-isomorphic simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026064.png" />-modules. | + | a) $ U _ {N} \cong e ( \oplus _ {t \in T } ^ {t} V ) $, |
| + | where $ T $ |
| + | is a left transversal for $ H $ |
| + | in $ G $. |
| + | Moreover, the modules $ ^ {t} V $, |
| + | $ t \in T $, |
| + | are pairwise non-isomorphic simple $ RN $- |
| + | modules. |
| | | |
− | b) The sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026065.png" /> of all submodules of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026066.png" /> isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026067.png" /> is a simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026068.png" />-module such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026069.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026070.png" />. | + | b) The sum $ W $ |
| + | of all submodules of $ U _ {N} $ |
| + | isomorphic to $ V $ |
| + | is a simple $ RH $- |
| + | module such that $ W _ {N} \cong eV $ |
| + | and $ U \cong W ^ {G} $. |
| | | |
− | The above result holds in the more general case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026071.png" /> is a finite group. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026072.png" /> is infinite, then Clifford's theorem is no longer true (see [[#References|[a3]]]). | + | The above result holds in the more general case where $ {G / N } $ |
| + | is a finite group. However, if $ {G / N } $ |
| + | is infinite, then Clifford's theorem is no longer true (see [[#References|[a3]]]). |
| | | |
| ==Induction from normal subgroups of representations.== | | ==Induction from normal subgroups of representations.== |
− | The principal result concerning induction is the Green indecomposable theorem, described below. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026073.png" /> is a complete [[Local ring|local ring]] and a principal ideal domain (cf. also [[Principal ideal ring|Principal ideal ring]]). An integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026074.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026075.png" /> is called an extension, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026076.png" />, written <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026077.png" />, if the following conditions hold: | + | The principal result concerning induction is the Green indecomposable theorem, described below. Assume that $ R $ |
| + | is a complete [[Local ring|local ring]] and a principal ideal domain (cf. also [[Principal ideal ring|Principal ideal ring]]). An integral domain $ S $ |
| + | containing $ R $ |
| + | is called an extension, of $ R $, |
| + | written $ {S / R } $, |
| + | if the following conditions hold: |
| | | |
− | A) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026078.png" /> is a principal ideal domain and a local ring; | + | A) $ S $ |
| + | is a principal ideal domain and a local ring; |
| | | |
− | B) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026079.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026080.png" />-free; | + | B) $ S $ |
| + | is $ R $- |
| + | free; |
| | | |
− | C) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026081.png" /> for some integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026082.png" />. One says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026083.png" /> is finite if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026084.png" /> is a finitely generated <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026085.png" />-module. An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026086.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026087.png" /> is said to be absolutely indecomposable if for every finite extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026089.png" /> is an indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026090.png" />-module. | + | C) $ J ( S ) ^ {e} = J ( R ) S $ |
| + | for some integer $ e \geq 1 $. |
| + | One says that $ {S / R } $ |
| + | is finite if $ S $ |
| + | is a finitely generated $ R $- |
| + | module. An $ RG $- |
| + | module $ V $ |
| + | is said to be absolutely indecomposable if for every finite extension $ {S / R } $, |
| + | $ S \otimes _ {R} V $ |
| + | is an indecomposable $ SG $- |
| + | module. |
| | | |
− | Assume that the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026091.png" /> is of prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026092.png" /> (cf. also [[Characteristic of a field|Characteristic of a field]]) and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026093.png" /> is a [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026094.png" />-group]]. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026095.png" /> is a finitely generated absolutely indecomposable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026096.png" />-module, then the induced module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026097.png" /> is absolutely indecomposable. Green's original statement pertained to the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026098.png" /> is a field. A proof in full generality is contained in [[#References|[a3]]]. | + | Assume that the field $ {R / {J ( R ) } } $ |
| + | is of prime characteristic $ p $( |
| + | cf. also [[Characteristic of a field|Characteristic of a field]]) and that $ {G / N } $ |
| + | is a [[P-group| $ p $- |
| + | group]]. If $ V $ |
| + | is a finitely generated absolutely indecomposable $ RN $- |
| + | module, then the induced module $ V ^ {G} $ |
| + | is absolutely indecomposable. Green's original statement pertained to the case where $ R $ |
| + | is a field. A proof in full generality is contained in [[#References|[a3]]]. |
| | | |
| ==Extension from normal subgroups of representations.== | | ==Extension from normal subgroups of representations.== |
− | The best result to date (1996) is Isaacs theorem, described below. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c11026099.png" /> be a normal [[Hall subgroup|Hall subgroup]] of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260100.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260101.png" /> be an arbitrary commutative ring and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260102.png" /> be a simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260103.png" />-invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260104.png" />-module. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260105.png" /> extends to an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260106.png" />-module, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260107.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260108.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260109.png" />. Originally, R. Isaacs proved only the special case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c110/c110260/c110260110.png" /> is a field. A proof in full generality can be found in [[#References|[a3]]]. | + | The best result to date (1996) is Isaacs theorem, described below. Let $ N $ |
| + | be a normal [[Hall subgroup|Hall subgroup]] of a finite group $ G $, |
| + | let $ R $ |
| + | be an arbitrary commutative ring and let $ V $ |
| + | be a simple $ G $- |
| + | invariant $ RN $- |
| + | module. Then $ V $ |
| + | extends to an $ RG $- |
| + | module, i.e. $ V \cong U _ {N} $ |
| + | for some $ RG $- |
| + | module $ U $. |
| + | Originally, R. Isaacs proved only the special case where $ R $ |
| + | is a field. A proof in full generality can be found in [[#References|[a3]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.H. Clifford, "Representations induced in an invariant subgroup" ''Ann. of Math. (2)'' , '''38''' pp. 533–550</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Karpilovsky, "Clifford theory for group representations" , North-Holland (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''3''' , North-Holland (1994)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.H. Clifford, "Representations induced in an invariant subgroup" ''Ann. of Math. (2)'' , '''38''' pp. 533–550</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Karpilovsky, "Clifford theory for group representations" , North-Holland (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> G. Karpilovsky, "Group representations" , '''3''' , North-Holland (1994)</TD></TR></table> |
(for group representations)
Let $ N $
be a normal subgroup of a finite group $ G $
and let $ RG $
be the group algebra of $ G $
over a commutative ring $ R $.
Given an $ RN $-
module $ V $
and $ g \in G $,
let $ ^ {g} V $
be the $ RN $-
module whose underlying $ R $-
module is $ V $
and on which $ N $
acts according to the rule $ n * v = ( g ^ {- 1 } ng ) v $,
$ v \in V $,
where $ n * v $
denotes the module operation in $ ^ {g} V $
and $ nv $
the operation in $ V $.
By definition, the inertia group $ H $
of $ V $
is $ H = \{ {g \in G } : {V \cong ^ {g} V } \} $.
It is clear that $ H $
is a subgroup of $ G $
containing $ N $;
if $ H = G $,
it is customary to say that $ V $
is $ G $-
invariant
Important information concerning simple and indecomposable $ RG $-
modules can be obtained by applying (perhaps repeatedly) three basic operations:
i) restriction to $ RN $;
ii) extension from $ RN $;
and
iii) induction from $ RN $.
This is the content of the so-called Clifford theory, which was originally developed by A.H. Clifford (see [a1]) for the classical case where $ R $
is a field. General references for this area are [a2], [a3].
The most important results are as follows.
Restriction to normal subgroups of representations.
Given a subgroup $ H $
of $ G $
and an $ RG $-
module $ U $,
let $ U _ {H} $
denote the restriction of $ U $
to $ RH $.
If $ V $
is an $ RH $-
module, then $ V ^ {G} $
denotes the induced module. For any integer $ e \geq 1 $,
let $ eV $
be the direct sum of $ e $
copies of a given module $ V $.
A classical Clifford theorem, originally proved for the case where $ R $
is a field, holds for an arbitrary commutative ring $ R $
and asserts the following. Assume that $ U $
is a simple $ RG $-
module. Then there exists a simple submodule $ V $
of $ U _ {N} $;
for any such $ V $
and the inertia group $ H $
of $ V $,
the following properties hold.
a) $ U _ {N} \cong e ( \oplus _ {t \in T } ^ {t} V ) $,
where $ T $
is a left transversal for $ H $
in $ G $.
Moreover, the modules $ ^ {t} V $,
$ t \in T $,
are pairwise non-isomorphic simple $ RN $-
modules.
b) The sum $ W $
of all submodules of $ U _ {N} $
isomorphic to $ V $
is a simple $ RH $-
module such that $ W _ {N} \cong eV $
and $ U \cong W ^ {G} $.
The above result holds in the more general case where $ {G / N } $
is a finite group. However, if $ {G / N } $
is infinite, then Clifford's theorem is no longer true (see [a3]).
Induction from normal subgroups of representations.
The principal result concerning induction is the Green indecomposable theorem, described below. Assume that $ R $
is a complete local ring and a principal ideal domain (cf. also Principal ideal ring). An integral domain $ S $
containing $ R $
is called an extension, of $ R $,
written $ {S / R } $,
if the following conditions hold:
A) $ S $
is a principal ideal domain and a local ring;
B) $ S $
is $ R $-
free;
C) $ J ( S ) ^ {e} = J ( R ) S $
for some integer $ e \geq 1 $.
One says that $ {S / R } $
is finite if $ S $
is a finitely generated $ R $-
module. An $ RG $-
module $ V $
is said to be absolutely indecomposable if for every finite extension $ {S / R } $,
$ S \otimes _ {R} V $
is an indecomposable $ SG $-
module.
Assume that the field $ {R / {J ( R ) } } $
is of prime characteristic $ p $(
cf. also Characteristic of a field) and that $ {G / N } $
is a $ p $-
group. If $ V $
is a finitely generated absolutely indecomposable $ RN $-
module, then the induced module $ V ^ {G} $
is absolutely indecomposable. Green's original statement pertained to the case where $ R $
is a field. A proof in full generality is contained in [a3].
Extension from normal subgroups of representations.
The best result to date (1996) is Isaacs theorem, described below. Let $ N $
be a normal Hall subgroup of a finite group $ G $,
let $ R $
be an arbitrary commutative ring and let $ V $
be a simple $ G $-
invariant $ RN $-
module. Then $ V $
extends to an $ RG $-
module, i.e. $ V \cong U _ {N} $
for some $ RG $-
module $ U $.
Originally, R. Isaacs proved only the special case where $ R $
is a field. A proof in full generality can be found in [a3].
References
[a1] | A.H. Clifford, "Representations induced in an invariant subgroup" Ann. of Math. (2) , 38 pp. 533–550 |
[a2] | G. Karpilovsky, "Clifford theory for group representations" , North-Holland (1989) |
[a3] | G. Karpilovsky, "Group representations" , 3 , North-Holland (1994) |