Difference between revisions of "Lambert series"
(Importing text file) |
(details) |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The series of functions | The series of functions | ||
− | + | \begin{equation}\sum_{n=1}^\infty a_n \frac{x^n}{1-x^n} \ . \label{eq1}\end{equation} | |
− | + | It was considered by J.H. Lambert (see [[#References|[1]]]) in connection with questions of convergence of [[power series]]. If the series | |
− | + | $$ | |
− | It was considered by J.H. Lambert (see [[#References|[1]]]) in connection with questions of convergence of [[ | + | \sum_{n=1}^\infty a_n |
− | + | $$ | |
− | + | converges, then the Lambert series converges for all values of $x$ except $x = \pm 1$; otherwise it converges for those values of $x$ for which the series | |
− | + | $$ | |
− | converges, then the Lambert series converges for all values of | + | \sum_{n=1}^\infty a_n x^n |
− | + | $$ | |
− | + | converges. The Lambert series is used in certain problems of number theory. Thus, for $|x| < 1$ the sum $\phi(x)$ of the series \eqref{eq1} can be represented as a power series: | |
− | + | $$ | |
− | converges. The Lambert series is used in certain problems of number theory. Thus, for < | + | \sum_{n=1}^\infty A_n x^n |
− | + | $$ | |
− | |||
− | |||
where | where | ||
+ | $$ | ||
+ | A_n = \sum_{d | n} a_d | ||
+ | $$ | ||
+ | and the summation is over all divisors $d$ of $n$. In particular, if $a_n = 1$, then $A_n = \tau(n)$, the [[number of divisors]] of $n$; if $a_n = n$, then $A_n = \sigma(n)$, the [[Sum of divisors|sum of the divisors]] of $n$. The behaviour of $\phi(x)$ (with suitable $a_n$) as $x \nearrow 1$ is used, for example (see [[#References|[3]]]), in the problem of Hardy and Ramanujan on obtaining an asymptotic formula for the number of "unbounded partitions" of a natural number. | ||
− | + | ====Comments==== | |
− | + | Lambert series also occur in the expansion of Eisenstein series, a particular kind of [[modular form]]. See [[#References|[a1]]]. | |
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> J.H. Lambert, "Opera Mathematica" , '''1–2''' , O. Füssli (1946–1948) {{ZBL|0060.01206}}</TD></TR> | |
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Fichtenholz, "Differential und Integralrechnung" , '''2''' , Deutsch. Verlag Wissenschaft. (1964) {{ZBL|0143.27002}}</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Postnikov, "Introduction to analytic number theory" , Moscow (1971) (In Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular functions and Dirichlet series in analysis" , Springer (1976) {{ZBL|0332.10017}}</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Rademacher, "Topics in analytic number theory" , Springer (1973) {{ZBL|0253.10002}}</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)</TD></TR> | ||
+ | </table> | ||
− | + | {{TEX|done}} | |
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 07:06, 29 March 2024
The series of functions \begin{equation}\sum_{n=1}^\infty a_n \frac{x^n}{1-x^n} \ . \label{eq1}\end{equation} It was considered by J.H. Lambert (see [1]) in connection with questions of convergence of power series. If the series $$ \sum_{n=1}^\infty a_n $$ converges, then the Lambert series converges for all values of $x$ except $x = \pm 1$; otherwise it converges for those values of $x$ for which the series $$ \sum_{n=1}^\infty a_n x^n $$ converges. The Lambert series is used in certain problems of number theory. Thus, for $|x| < 1$ the sum $\phi(x)$ of the series \eqref{eq1} can be represented as a power series: $$ \sum_{n=1}^\infty A_n x^n $$ where $$ A_n = \sum_{d | n} a_d $$ and the summation is over all divisors $d$ of $n$. In particular, if $a_n = 1$, then $A_n = \tau(n)$, the number of divisors of $n$; if $a_n = n$, then $A_n = \sigma(n)$, the sum of the divisors of $n$. The behaviour of $\phi(x)$ (with suitable $a_n$) as $x \nearrow 1$ is used, for example (see [3]), in the problem of Hardy and Ramanujan on obtaining an asymptotic formula for the number of "unbounded partitions" of a natural number.
Comments
Lambert series also occur in the expansion of Eisenstein series, a particular kind of modular form. See [a1].
References
[1] | J.H. Lambert, "Opera Mathematica" , 1–2 , O. Füssli (1946–1948) Zbl 0060.01206 |
[2] | G.M. Fichtenholz, "Differential und Integralrechnung" , 2 , Deutsch. Verlag Wissenschaft. (1964) Zbl 0143.27002 |
[3] | A.G. Postnikov, "Introduction to analytic number theory" , Moscow (1971) (In Russian) |
[a1] | T.M. Apostol, "Modular functions and Dirichlet series in analysis" , Springer (1976) Zbl 0332.10017 |
[a2] | H. Rademacher, "Topics in analytic number theory" , Springer (1973) Zbl 0253.10002 |
[a3] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
Lambert series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lambert_series&oldid=13504