Namespaces
Variants
Actions

Difference between revisions of "Unitary matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955401.png" /> over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955402.png" /> of complex numbers, whose rows form an orthonormal system, i.e.
+
<!--
 +
u0955401.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/U095/U.0905540 Unitary matrix
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955403.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955404.png" />. In a [[Unitary space|unitary space]], transformation from one orthonormal basis to another is accomplished by a unitary matrix. The matrix of a [[Unitary transformation|unitary transformation]] relative to an orthonormal basis is also (called) a unitary matrix. A square matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955405.png" /> with complex entries is unitary if and only if it satisfies any of the following conditions:
+
A square matrix  $  A = \| a _ {ik} \| _ {1}  ^ {n} $
 +
over the field  $  \mathbf C $
 +
of complex numbers, whose rows form an orthonormal system, i.e.
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955406.png" />;
+
$$
 +
a _ {i1} \overline{a}\; _ {k1} + \dots + a _ {in} \overline{a}\; _ {kn}  = \
 +
\left \{
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955407.png" />;
+
$  i, k = 1 \dots n $.  
 +
In a [[Unitary space|unitary space]], transformation from one orthonormal basis to another is accomplished by a unitary matrix. The matrix of a [[Unitary transformation|unitary transformation]] relative to an orthonormal basis is also (called) a unitary matrix. A square matrix  $  A $
 +
with complex entries is unitary if and only if it satisfies any of the following conditions:
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955408.png" />;
+
1) $  A  ^ {*} A = E $;
  
4) the columns of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u0955409.png" /> form an orthonormal system (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u09554010.png" /> is the conjugate transposed of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095540/u09554011.png" />).
+
2) $  AA  ^ {*} = E $;
  
The determinant of a unitary matrix is a complex number of modulus one.
+
3)  $  A  ^ {*} = A  ^ {-} 1 $;
  
 +
4) the columns of  $  A $
 +
form an orthonormal system (here  $  A  ^ {*} $
 +
is the conjugate transposed of  $  A $).
  
 +
The determinant of a unitary matrix is a complex number of modulus one.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Noll,  "Finite dimensional spaces" , M. Nijhoff  (1987)  pp. 63</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.H. Greub,  "Linear algebra" , Springer  (1975)  pp. 329</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Noll,  "Finite dimensional spaces" , M. Nijhoff  (1987)  pp. 63</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.H. Greub,  "Linear algebra" , Springer  (1975)  pp. 329</TD></TR></table>

Latest revision as of 08:27, 6 June 2020


A square matrix $ A = \| a _ {ik} \| _ {1} ^ {n} $ over the field $ \mathbf C $ of complex numbers, whose rows form an orthonormal system, i.e.

$$ a _ {i1} \overline{a}\; _ {k1} + \dots + a _ {in} \overline{a}\; _ {kn} = \ \left \{

$ i, k = 1 \dots n $. In a unitary space, transformation from one orthonormal basis to another is accomplished by a unitary matrix. The matrix of a unitary transformation relative to an orthonormal basis is also (called) a unitary matrix. A square matrix $ A $ with complex entries is unitary if and only if it satisfies any of the following conditions:

1) $ A ^ {*} A = E $;

2) $ AA ^ {*} = E $;

3) $ A ^ {*} = A ^ {-} 1 $;

4) the columns of $ A $ form an orthonormal system (here $ A ^ {*} $ is the conjugate transposed of $ A $).

The determinant of a unitary matrix is a complex number of modulus one.

Comments

References

[a1] W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. 63
[a2] W.H. Greub, "Linear algebra" , Springer (1975) pp. 329
How to Cite This Entry:
Unitary matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unitary_matrix&oldid=13327
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article