|
|
(3 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | ''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369901.png" /> with kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369902.png" />''
| + | <!-- |
| + | e0369901.png |
| + | $#A+1 = 39 n = 0 |
| + | $#C+1 = 39 : ~/encyclopedia/old_files/data/E036/E.0306990 Extension of a Lie algebra |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369903.png" /> with an epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369904.png" /> whose kernel is an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369905.png" />. This is equivalent to specifying an exact sequence
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | {{MSC|17B}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369906.png" /></td> </tr></table>
| + | '' $ S $ with kernel $ A $'' |
| | | |
− | The extension is said to split if there is a subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369907.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369908.png" /> (direct sum of modules). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e0369909.png" /> induces an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699010.png" />, and defines an action of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699011.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699012.png" /> by derivations. Conversely, any homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699014.png" /> is the algebra of derivations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699015.png" />, uniquely determines a split extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699016.png" /> with multiplication given by
| + | A Lie algebra $ G $ |
| + | with an epimorphism $ \phi : G \rightarrow S $ |
| + | whose kernel is an ideal $ A \subset G $. |
| + | This is equivalent to specifying an exact sequence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699017.png" /></td> </tr></table>
| + | $$ |
| + | 0 \rightarrow A \rightarrow G \mathop \rightarrow \limits ^ \phi S \rightarrow 0. |
| + | $$ |
| | | |
− | For finite-dimensional Lie algebras over a field of characteristic 0, Lévy's theorem holds: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699018.png" /> is semi-simple, then every extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699019.png" /> splits.
| + | The extension is said to split if there is a subalgebra $ S _ {1} \subset G $ |
| + | such that $ G = S _ {1} \oplus A $ (direct sum of modules). Then $ \phi $ |
| + | induces an isomorphism $ S _ {1} \approx S $, |
| + | and defines an action of the algebra $ S $ |
| + | on $ A $ |
| + | by derivations. Conversely, any homomorphism $ \alpha : S \rightarrow \mathop{\rm Der} A $, |
| + | where $ \mathop{\rm Der} A $ |
| + | is the algebra of derivations of $ A $, |
| + | uniquely determines a split extension $ S \oplus A $ |
| + | with multiplication given by |
| | | |
− | Of all non-split extensions, the Abelian ones have been studied most, i.e. the extensions with an Abelian kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699020.png" />. In this case the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699021.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699022.png" /> induces an action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699023.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699024.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699025.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699026.png" />-module. For Lie algebras over a field, every Abelian extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699027.png" /> with as kernel an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699028.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699029.png" /> has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699030.png" /> with multiplication given by
| + | $$ |
| + | [( s, a), ( s ^ \prime , a ^ \prime )] = \ |
| + | ([ s, s ^ \prime ], \alpha ( s) a ^ \prime - \alpha ( s ^ \prime ) a + |
| + | [ a, a ^ \prime ]). |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699031.png" /></td> </tr></table>
| + | For finite-dimensional Lie algebras over a field of characteristic 0, Lévy's theorem holds: If $ S $ |
| + | is semi-simple, then every extension of $ S $ |
| + | splits. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699032.png" /> is some linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699033.png" />. The Jacobi identity is equivalent to the fact that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699034.png" /> is a two-dimensional cocycle (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699036.png" />-cocycle, see [[Cohomology of Lie algebras|Cohomology of Lie algebras]]). The extensions determined by cohomologous cocycles are equivalent in a natural sense. In particular, an extension is split if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699037.png" /> is cohomologous to zero. Thus, the Abelian extensions of an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699038.png" /> with kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699039.png" /> are described by the cohomology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036990/e03699040.png" />. The study of extensions with solvable kernel reduces to the case of Abelian extensions.
| + | Of all non-split extensions, the Abelian ones have been studied most, i.e. the extensions with an Abelian kernel $ A $. |
| + | In this case the action of $ G $ |
| + | on $ A $ |
| + | induces an action of $ G/A \cong S $ |
| + | on $ A $, |
| + | that is, $ A $ |
| + | is an $ S $-module. For Lie algebras over a field, every Abelian extension of $ S $ |
| + | with as kernel an $ S $-module $ A $ |
| + | has the form $ S \oplus A $ |
| + | with multiplication given by |
| + | |
| + | $$ |
| + | [( s, a), ( s ^ \prime , a ^ \prime )] = \ |
| + | ([ s, s ^ \prime ], \alpha ( s) a ^ \prime - \alpha ( s ^ \prime ) a + |
| + | \psi ( s, s ^ \prime )), |
| + | $$ |
| + | |
| + | where $ \psi $ |
| + | is some linear mapping $ S \wedge S \rightarrow A $. |
| + | The Jacobi identity is equivalent to the fact that $ \psi $ |
| + | is a two-dimensional cocycle (or $ 2 $-cocycle, see [[Cohomology of Lie algebras|Cohomology of Lie algebras]]). The extensions determined by cohomologous cocycles are equivalent in a natural sense. In particular, an extension is split if and only if $ \psi $ |
| + | is cohomologous to zero. Thus, the Abelian extensions of an algebra $ S $ |
| + | with kernel $ A $ |
| + | are described by the cohomology group $ H ^ {2} ( S, A) $. |
| + | The study of extensions with solvable kernel reduces to the case of Abelian extensions. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))</TD></TR></table>
| + | * {{Ref|1}} N. Jacobson, "Lie algebras" , Interscience (1962) {{ZBL|0121.27504}} (also: Dover, reprint, 1979) |
2020 Mathematics Subject Classification: Primary: 17B [MSN][ZBL]
$ S $ with kernel $ A $
A Lie algebra $ G $
with an epimorphism $ \phi : G \rightarrow S $
whose kernel is an ideal $ A \subset G $.
This is equivalent to specifying an exact sequence
$$
0 \rightarrow A \rightarrow G \mathop \rightarrow \limits ^ \phi S \rightarrow 0.
$$
The extension is said to split if there is a subalgebra $ S _ {1} \subset G $
such that $ G = S _ {1} \oplus A $ (direct sum of modules). Then $ \phi $
induces an isomorphism $ S _ {1} \approx S $,
and defines an action of the algebra $ S $
on $ A $
by derivations. Conversely, any homomorphism $ \alpha : S \rightarrow \mathop{\rm Der} A $,
where $ \mathop{\rm Der} A $
is the algebra of derivations of $ A $,
uniquely determines a split extension $ S \oplus A $
with multiplication given by
$$
[( s, a), ( s ^ \prime , a ^ \prime )] = \
([ s, s ^ \prime ], \alpha ( s) a ^ \prime - \alpha ( s ^ \prime ) a +
[ a, a ^ \prime ]).
$$
For finite-dimensional Lie algebras over a field of characteristic 0, Lévy's theorem holds: If $ S $
is semi-simple, then every extension of $ S $
splits.
Of all non-split extensions, the Abelian ones have been studied most, i.e. the extensions with an Abelian kernel $ A $.
In this case the action of $ G $
on $ A $
induces an action of $ G/A \cong S $
on $ A $,
that is, $ A $
is an $ S $-module. For Lie algebras over a field, every Abelian extension of $ S $
with as kernel an $ S $-module $ A $
has the form $ S \oplus A $
with multiplication given by
$$
[( s, a), ( s ^ \prime , a ^ \prime )] = \
([ s, s ^ \prime ], \alpha ( s) a ^ \prime - \alpha ( s ^ \prime ) a +
\psi ( s, s ^ \prime )),
$$
where $ \psi $
is some linear mapping $ S \wedge S \rightarrow A $.
The Jacobi identity is equivalent to the fact that $ \psi $
is a two-dimensional cocycle (or $ 2 $-cocycle, see Cohomology of Lie algebras). The extensions determined by cohomologous cocycles are equivalent in a natural sense. In particular, an extension is split if and only if $ \psi $
is cohomologous to zero. Thus, the Abelian extensions of an algebra $ S $
with kernel $ A $
are described by the cohomology group $ H ^ {2} ( S, A) $.
The study of extensions with solvable kernel reduces to the case of Abelian extensions.
References
- [1] N. Jacobson, "Lie algebras" , Interscience (1962) Zbl 0121.27504 (also: Dover, reprint, 1979)