Namespaces
Variants
Actions

Difference between revisions of "Vector bundle, analytic"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing spaces)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A locally trivial analytic bundle over an analytic space whose fibres have the structure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964001.png" />-dimensional vector space over a ground field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964002.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964003.png" /> is the field of complex numbers, the analytic bundle is said to be holomorphic). The number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964004.png" /> is said to be the dimension, or rank, of the bundle. Similarly as for a topological bundle (cf. [[Vector bundle|Vector bundle]]), definitions are given of the category of analytic vector bundles, and of the concepts of a subbundle, a quotient bundle, the direct sum, the tensor product, the exterior product of analytic vector bundles, etc.
+
<!--
 +
v0964001.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/V096/V.0906400 Vector bundle, analytic
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The analytic sections of an analytic vector bundle with base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964005.png" /> form a module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964006.png" /> over the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964007.png" /> of analytic functions on the base. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964008.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v0964009.png" /> is compact, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640010.png" /> is a finite-dimensional vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640011.png" /> (see [[Finiteness theorems|Finiteness theorems]]). If, on the other hand, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640012.png" /> is a finite-dimensional complex [[Stein space|Stein space]], then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640013.png" /> is a [[Projective module|projective module]] of finite type over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640014.png" />, and the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640015.png" /> defines an equivalence between the category of analytic vector bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640016.png" /> and the category of projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640017.png" />-modules of finite type [[#References|[4]]].
+
{{TEX|auto}}
 +
{{TEX|done}}
  
Examples of analytic vector bundles include the tangent bundle of an analytic manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640018.png" /> (its analytic sections are analytic vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640019.png" />), and the normal bundle of a submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640020.png" />.
+
A locally trivial analytic bundle over an analytic space whose fibres have the structure of an  $  n $-dimensional vector space over a ground field  $  k $ (if  $  k = \mathbf C $
 +
is the field of complex numbers, the analytic bundle is said to be holomorphic). The number  $  n $
 +
is said to be the dimension, or rank, of the bundle. Similarly as for a topological bundle (cf. [[Vector bundle|Vector bundle]]), definitions are given of the category of analytic vector bundles, and of the concepts of a subbundle, a quotient bundle, the direct sum, the tensor product, the exterior product of analytic vector bundles, etc.
  
The classification of analytic vector bundles of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640021.png" /> on a given analytic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640022.png" /> is equivalent with the classification of principal analytic fibrations (cf. [[Principal analytic fibration|Principal analytic fibration]]) with base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640023.png" /> and structure group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640024.png" /> and, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640025.png" />, has been completed only in certain special cases. For projective complex algebraic varieties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640026.png" /> it is identical with the classification of algebraic vector bundles (cf. [[Comparison theorem (algebraic geometry)|Comparison theorem (algebraic geometry)]]).
+
The analytic sections of an analytic vector bundle with base  $  X $
 +
form a module  $  \Gamma ( E) $
 +
over the algebra  $  A( X) $
 +
of analytic functions on the base. If  $  k = \mathbf C $
 +
and  $  X $
 +
is compact,  $  \Gamma ( E) $
 +
is a finite-dimensional vector space over  $  \mathbf C $ (see [[Finiteness theorems|Finiteness theorems]]). If, on the other hand, $  X $
 +
is a finite-dimensional complex [[Stein space|Stein space]], then  $  \Gamma ( E) $
 +
is a [[Projective module|projective module]] of finite type over  $  A( X) $,
 +
and the correspondence  $  E \mapsto \Gamma ( E) $
 +
defines an equivalence between the category of analytic vector bundles over  $  X $
 +
and the category of projective  $  A( X) $-modules of finite type [[#References|[4]]].
  
Analytic vector bundles of rank 1 on a complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640027.png" /> (in other words, bundles of complex lines, or line bundles) play an important part in complex analytic geometry. Each [[Divisor|divisor]] on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640028.png" /> necessarily defines an analytic bundle of rank 1, two divisors defining isomorphic bundles if and only if they are linearly equivalent. All analytic line bundles on a projective algebraic variety are defined by a divisor. The imbeddability of a complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640029.png" /> into a projective space is closely connected with the existence of ample line bundles on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640030.png" /> (cf. [[Ample vector bundle|Ample vector bundle]]). If one is given a discrete group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640031.png" /> of automorphisms of a complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640032.png" />, each quotient of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640033.png" /> will determine a line bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640034.png" />, with the respective automorphic forms as its analytic sections. Analytic vector bundles of rank 1 constitute the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640035.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640036.png" /> is the sheaf of invertible elements of the structure sheaf. The correspondence between each bundle and its first Chern class yields the homomorphism
+
Examples of analytic vector bundles include the tangent bundle of an analytic manifold  $  X $ (its analytic sections are analytic vector fields on  $  X $),  
 +
and the normal bundle of a submanifold  $  Y \subset  X $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640037.png" /></td> </tr></table>
+
The classification of analytic vector bundles of rank  $  n $
 +
on a given analytic space  $  X $
 +
is equivalent with the classification of principal analytic fibrations (cf. [[Principal analytic fibration|Principal analytic fibration]]) with base  $  X $
 +
and structure group  $  \mathop{\rm GL} ( n, k) $
 +
and, for  $  n > 1 $,
 +
has been completed only in certain special cases. For projective complex algebraic varieties  $  X $
 +
it is identical with the classification of algebraic vector bundles (cf. [[Comparison theorem (algebraic geometry)|Comparison theorem (algebraic geometry)]]).
  
whose kernel is the set of topologically trivial line bundles. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640038.png" /> is a complex manifold, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640039.png" /> may be described as the set of cohomology classes which are representable by closed differential forms of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640040.png" />. If, in addition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640041.png" /> is compact and Kählerian, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640042.png" /> is isomorphic to the [[Picard variety|Picard variety]] of the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640043.png" /> and is thus a complex torus [[#References|[2]]].
+
Analytic vector bundles of rank 1 on a complex space  $  X $ (in other words, bundles of complex lines, or line bundles) play an important part in complex analytic geometry. Each [[Divisor|divisor]] on the space  $  X $
 +
necessarily defines an analytic bundle of rank 1, two divisors defining isomorphic bundles if and only if they are linearly equivalent. All analytic line bundles on a projective algebraic variety are defined by a divisor. The imbeddability of a complex space  $  X $
 +
into a projective space is closely connected with the existence of ample line bundles on  $  X $ (cf. [[Ample vector bundle|Ample vector bundle]]). If one is given a discrete group  $  \Gamma $
 +
of automorphisms of a complex space  $  X $,
 +
each quotient of  $  \Gamma $
 +
will determine a line bundle over  $  X/ \Gamma $,
 +
with the respective automorphic forms as its analytic sections. Analytic vector bundles of rank 1 constitute the group  $  H  ^ {1} ( X, {\mathcal O} _ {X}  ^ {*} ) $,
 +
where  $  {\mathcal O} _ {X}  ^ {*} $
 +
is the sheaf of invertible elements of the structure sheaf. The correspondence between each bundle and its first Chern class yields the homomorphism
  
To each analytic vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640044.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640045.png" /> on an analytic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640046.png" /> corresponds a sheaf of germs of analytic sections of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640047.png" />, which is a locally free analytic sheaf of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640048.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640049.png" />. This correspondence defines an equivalence between the categories of analytic vector bundles and locally free analytic sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640050.png" />. Attempts to generalize this result to arbitrary coherent analytic sheaves resulted in the following generalization of the concept of an analytic vector bundle [[#References|[3]]]: A surjective morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640051.png" /> is said to be an analytic family of vector spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640052.png" /> (or a linear space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640053.png" />) if its fibres have the structure of finite-dimensional vector spaces over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640054.png" />, and if the operations of addition, multiplication by a scalar and the zero section satisfy the natural conditions of analyticity. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640055.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640056.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640057.png" /> is coherent), the analytic family of vector spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640058.png" /> defines a [[Coherent analytic sheaf|coherent analytic sheaf]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640059.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640060.png" />: For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640061.png" /> the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640062.png" /> is the space of analytic functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640063.png" /> which are linear on the fibres. In the same way is defined the duality between the categories of analytic families of vector spaces and coherent analytic sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096400/v09640064.png" />.
+
$$
 +
\gamma :  H  ^ {1} ( X, {\mathcal O} _ {X}  ^ {*} )  \rightarrow  H  ^ {2} ( X, \mathbf Z ),
 +
$$
 +
 
 +
whose kernel is the set of topologically trivial line bundles. If  $  X $
 +
is a complex manifold,  $  \mathop{\rm Im}  \gamma $
 +
may be described as the set of cohomology classes which are representable by closed differential forms of type  $  ( 1, 1) $.
 +
If, in addition,  $  X $
 +
is compact and Kählerian,  $  \mathop{\rm Ker}  \gamma $
 +
is isomorphic to the [[Picard variety|Picard variety]] of the manifold  $  X $
 +
and is thus a complex torus [[#References|[2]]].
 +
 
 +
To each analytic vector bundle $  V $
 +
of rank $  n $
 +
on an analytic space $  X $
 +
corresponds a sheaf of germs of analytic sections of $  V $,  
 +
which is a locally free analytic sheaf of rank $  n $
 +
on $  X $.  
 +
This correspondence defines an equivalence between the categories of analytic vector bundles and locally free analytic sheaves on $  X $.  
 +
Attempts to generalize this result to arbitrary coherent analytic sheaves resulted in the following generalization of the concept of an analytic vector bundle [[#References|[3]]]: A surjective morphism $  \pi : V \rightarrow X $
 +
is said to be an analytic family of vector spaces over $  X $ (or a linear space over $  X $)  
 +
if its fibres have the structure of finite-dimensional vector spaces over $  k $,  
 +
and if the operations of addition, multiplication by a scalar and the zero section satisfy the natural conditions of analyticity. If $  k= \mathbf C $ (or $  k= \mathbf R $
 +
and $  X $
 +
is coherent), the analytic family of vector spaces $  \pi : V \rightarrow X $
 +
defines a [[Coherent analytic sheaf|coherent analytic sheaf]] $  F $
 +
on $  X $:  
 +
For $  U \subset  X $
 +
the group $  F( U) $
 +
is the space of analytic functions on $  \pi  ^ {-1} ( U) $
 +
which are linear on the fibres. In the same way is defined the duality between the categories of analytic families of vector spaces and coherent analytic sheaves on $  X $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.C. Gunning,   H. Rossi,   "Analytic functions of several complex variables" , Prentice-Hall (1965)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.S. Chern,   "Complex manifolds without potential theory" , Springer (1979)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Fischer,   "Lineare Faserräume und kohärente Modulgarben über komplexen Räumen" ''Arch. Math. (Basel)'' , '''18''' (1967) pp. 609–617</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> O. Forster,   K.J. Ramspott,   "Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln" ''Arch. Math. (Basel)'' , '''19''' (1968) pp. 417–422</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) {{MR|0180696}} {{ZBL|0141.08601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) {{MR|0533884}} {{ZBL|0444.32004}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Fischer, "Lineare Faserräume und kohärente Modulgarben über komplexen Räumen" ''Arch. Math. (Basel)'' , '''18''' (1967) pp. 609–617 {{MR|0220972}} {{ZBL|0177.34402}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> O. Forster, K.J. Ramspott, "Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln" ''Arch. Math. (Basel)'' , '''19''' (1968) pp. 417–422 {{MR|0236959}} {{ZBL|0162.38502}} </TD></TR></table>

Latest revision as of 06:45, 22 February 2022


A locally trivial analytic bundle over an analytic space whose fibres have the structure of an $ n $-dimensional vector space over a ground field $ k $ (if $ k = \mathbf C $ is the field of complex numbers, the analytic bundle is said to be holomorphic). The number $ n $ is said to be the dimension, or rank, of the bundle. Similarly as for a topological bundle (cf. Vector bundle), definitions are given of the category of analytic vector bundles, and of the concepts of a subbundle, a quotient bundle, the direct sum, the tensor product, the exterior product of analytic vector bundles, etc.

The analytic sections of an analytic vector bundle with base $ X $ form a module $ \Gamma ( E) $ over the algebra $ A( X) $ of analytic functions on the base. If $ k = \mathbf C $ and $ X $ is compact, $ \Gamma ( E) $ is a finite-dimensional vector space over $ \mathbf C $ (see Finiteness theorems). If, on the other hand, $ X $ is a finite-dimensional complex Stein space, then $ \Gamma ( E) $ is a projective module of finite type over $ A( X) $, and the correspondence $ E \mapsto \Gamma ( E) $ defines an equivalence between the category of analytic vector bundles over $ X $ and the category of projective $ A( X) $-modules of finite type [4].

Examples of analytic vector bundles include the tangent bundle of an analytic manifold $ X $ (its analytic sections are analytic vector fields on $ X $), and the normal bundle of a submanifold $ Y \subset X $.

The classification of analytic vector bundles of rank $ n $ on a given analytic space $ X $ is equivalent with the classification of principal analytic fibrations (cf. Principal analytic fibration) with base $ X $ and structure group $ \mathop{\rm GL} ( n, k) $ and, for $ n > 1 $, has been completed only in certain special cases. For projective complex algebraic varieties $ X $ it is identical with the classification of algebraic vector bundles (cf. Comparison theorem (algebraic geometry)).

Analytic vector bundles of rank 1 on a complex space $ X $ (in other words, bundles of complex lines, or line bundles) play an important part in complex analytic geometry. Each divisor on the space $ X $ necessarily defines an analytic bundle of rank 1, two divisors defining isomorphic bundles if and only if they are linearly equivalent. All analytic line bundles on a projective algebraic variety are defined by a divisor. The imbeddability of a complex space $ X $ into a projective space is closely connected with the existence of ample line bundles on $ X $ (cf. Ample vector bundle). If one is given a discrete group $ \Gamma $ of automorphisms of a complex space $ X $, each quotient of $ \Gamma $ will determine a line bundle over $ X/ \Gamma $, with the respective automorphic forms as its analytic sections. Analytic vector bundles of rank 1 constitute the group $ H ^ {1} ( X, {\mathcal O} _ {X} ^ {*} ) $, where $ {\mathcal O} _ {X} ^ {*} $ is the sheaf of invertible elements of the structure sheaf. The correspondence between each bundle and its first Chern class yields the homomorphism

$$ \gamma : H ^ {1} ( X, {\mathcal O} _ {X} ^ {*} ) \rightarrow H ^ {2} ( X, \mathbf Z ), $$

whose kernel is the set of topologically trivial line bundles. If $ X $ is a complex manifold, $ \mathop{\rm Im} \gamma $ may be described as the set of cohomology classes which are representable by closed differential forms of type $ ( 1, 1) $. If, in addition, $ X $ is compact and Kählerian, $ \mathop{\rm Ker} \gamma $ is isomorphic to the Picard variety of the manifold $ X $ and is thus a complex torus [2].

To each analytic vector bundle $ V $ of rank $ n $ on an analytic space $ X $ corresponds a sheaf of germs of analytic sections of $ V $, which is a locally free analytic sheaf of rank $ n $ on $ X $. This correspondence defines an equivalence between the categories of analytic vector bundles and locally free analytic sheaves on $ X $. Attempts to generalize this result to arbitrary coherent analytic sheaves resulted in the following generalization of the concept of an analytic vector bundle [3]: A surjective morphism $ \pi : V \rightarrow X $ is said to be an analytic family of vector spaces over $ X $ (or a linear space over $ X $) if its fibres have the structure of finite-dimensional vector spaces over $ k $, and if the operations of addition, multiplication by a scalar and the zero section satisfy the natural conditions of analyticity. If $ k= \mathbf C $ (or $ k= \mathbf R $ and $ X $ is coherent), the analytic family of vector spaces $ \pi : V \rightarrow X $ defines a coherent analytic sheaf $ F $ on $ X $: For $ U \subset X $ the group $ F( U) $ is the space of analytic functions on $ \pi ^ {-1} ( U) $ which are linear on the fibres. In the same way is defined the duality between the categories of analytic families of vector spaces and coherent analytic sheaves on $ X $.

References

[1] R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) MR0180696 Zbl 0141.08601
[2] S.S. Chern, "Complex manifolds without potential theory" , Springer (1979) MR0533884 Zbl 0444.32004
[3] G. Fischer, "Lineare Faserräume und kohärente Modulgarben über komplexen Räumen" Arch. Math. (Basel) , 18 (1967) pp. 609–617 MR0220972 Zbl 0177.34402
[4] O. Forster, K.J. Ramspott, "Über die Anzahl der Erzeugenden von projektiven Steinschen Moduln" Arch. Math. (Basel) , 19 (1968) pp. 417–422 MR0236959 Zbl 0162.38502
How to Cite This Entry:
Vector bundle, analytic. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vector_bundle,_analytic&oldid=13046
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article