Difference between revisions of "Star of a function element"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0872301.png | ||
+ | $#A+1 = 40 n = 0 | ||
+ | $#C+1 = 40 : ~/encyclopedia/old_files/data/S087/S.0807230 Star of a function element, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Mittag-Leffler star'' | ''Mittag-Leffler star'' | ||
A [[Star-like domain|star-like domain]] in which the given element | A [[Star-like domain|star-like domain]] in which the given element | ||
− | + | $$ | |
− | + | f ( z ) = \sum _ { k=0 } ^ \infty c _ {k} ( z - a ) ^ {k} | |
− | + | $$ | |
− | + | of an analytic function (cf. [[Analytic function, element of an|Analytic function, element of an]]) can be continued analytically along rays issuing from the centre $ a $. | |
+ | The star consists of those points of the complex $ z $-plane which can be reached by [[Analytic continuation|analytic continuation]] of $ f ( z ) $ | ||
+ | as a power series along all possible rays from the centre $ a $ | ||
+ | of the series. If $ z = a + r e ^ {i \phi } $, | ||
+ | $ 0 \leq r < + \infty $, | ||
+ | is a ray on which there are points that cannot be reached this way, then there is a point $ z _ {1} \neq a $ | ||
+ | on the ray such that the element can be continued to any point of the interval $ [ a , z _ {1} ) $ | ||
+ | but not beyond. If continuation is possible to any point of the ray, one puts $ z _ {1} = \infty $. | ||
+ | The set of points belonging to all intervals $ [ a , z _ {1} ) $ | ||
+ | is a (simply-connected) star-like domain about $ a $, | ||
+ | called the star of the function element and denoted by $ S _ {f} $. | ||
+ | Analytic continuation in $ S _ {f} $ | ||
+ | results in a regular analytic function $ f ( z ) $, | ||
+ | which is the univalent branch in $ S _ {f} $ | ||
+ | of the [[Complete analytic function|complete analytic function]] generated by the given element. | ||
− | + | All points of the boundary $ \partial S _ {f} $ | |
+ | are accessible (cf. [[Attainable boundary point|Attainable boundary point]]). In questions of analytic continuation (see also [[Hadamard theorem|Hadamard theorem]]) one also defines angular, attainable and well-attainable points of $ \partial S _ {f} $. | ||
+ | A point $ z _ {1} \in \partial S _ {f} $ | ||
+ | is called an angular boundary point of the star of a function element if its modulus $ | z _ {1} | $ | ||
+ | is minimal among all points of $ \partial S _ {f} $ | ||
+ | with the same argument $ \mathop{\rm arg} z _ {1} $. | ||
+ | A point $ z _ {1} \in \partial S _ {f} $ | ||
+ | is called an attainable boundary point of the star if there is a half-disc $ V ( z _ {1} ) $ | ||
+ | such that $ f ( z ) $ | ||
+ | is regular everywhere inside $ V ( z _ {1} ) $ | ||
+ | and at the points of its diameter other than $ z _ {1} $. | ||
+ | The point is said to be well-attainable if there is a sector $ V ( z _ {1} ) $ | ||
+ | with apex $ z _ {1} $ | ||
+ | and angle greater than $ \pi $, | ||
+ | such that $ f ( z ) $ | ||
+ | is regular in the domain $ \{ V ( z _ {1} ) \cap ( | z - z _ {1} | < \delta ) \} $ | ||
+ | for sufficiently small $ \delta > 0 $. | ||
− | showed that a regular function | + | G. Mittag-Leffler showed that a regular function $ f ( z ) $ |
+ | can be expressed in its star as a series of polynomials convergent inside $ S _ {f} $: | ||
− | + | $$ \tag{* } | |
+ | f ( z ) = \sum _ { n=0 } ^ \infty \ | ||
+ | \sum _ { \nu = 0 } ^ { {k _ n } } c _ \nu ^ {(n)} | ||
+ | \frac{f ^ { ( \nu ) } ( a ) }{\nu ! } | ||
+ | ( z - a ) ^ \nu . | ||
+ | $$ | ||
− | Formula (*) is known as the Mittag-Leffler expansion in a star. The degrees of the polynomials | + | Formula (*) is known as the Mittag-Leffler expansion in a star. The degrees of the polynomials $ k _ {n} $ |
+ | and their coefficients $ c _ {0} ^ {(n)} \dots c _ {k _ {n} } ^ {(n)} $, | ||
+ | $ n = 0 , 1 \dots $ | ||
+ | are independent of the form of $ f ( z ) $ | ||
+ | and can be evaluated once and for all. This was done by P. Painlevé (see [[#References|[2]]], [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène I" ''Acta Math.'' , '''23''' (1899) pp. 43–62</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène II" ''Acta Math.'' , '''24''' (1901) pp. 183–204</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène III" ''Acta Math.'' , '''24''' (1901) pp. 205–244</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène IV" ''Acta Math.'' , '''26''' (1902) pp. 353–393</TD></TR><TR><TD valign="top">[1e]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène V" ''Acta Math.'' , '''29''' (1905) pp. 101–182</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Borel, "Leçons sur les fonctions de variables réelles et les développements en séries de polynômes" , Gauthier-Villars (1905)</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène I" ''Acta Math.'' , '''23''' (1899) pp. 43–62</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène II" ''Acta Math.'' , '''24''' (1901) pp. 183–204</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène III" ''Acta Math.'' , '''24''' (1901) pp. 205–244</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène IV" ''Acta Math.'' , '''26''' (1902) pp. 353–393</TD></TR><TR><TD valign="top">[1e]</TD> <TD valign="top"> G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène V" ''Acta Math.'' , '''29''' (1905) pp. 101–182</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.I. Markushevich, "Theory of functions of a complex variable" , '''2''' , Chelsea (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Borel, "Leçons sur les fonctions de variables réelles et les développements en séries de polynômes" , Gauthier-Villars (1905)</TD></TR></table> |
Latest revision as of 19:11, 19 June 2020
Mittag-Leffler star
A star-like domain in which the given element
$$ f ( z ) = \sum _ { k=0 } ^ \infty c _ {k} ( z - a ) ^ {k} $$
of an analytic function (cf. Analytic function, element of an) can be continued analytically along rays issuing from the centre $ a $. The star consists of those points of the complex $ z $-plane which can be reached by analytic continuation of $ f ( z ) $ as a power series along all possible rays from the centre $ a $ of the series. If $ z = a + r e ^ {i \phi } $, $ 0 \leq r < + \infty $, is a ray on which there are points that cannot be reached this way, then there is a point $ z _ {1} \neq a $ on the ray such that the element can be continued to any point of the interval $ [ a , z _ {1} ) $ but not beyond. If continuation is possible to any point of the ray, one puts $ z _ {1} = \infty $. The set of points belonging to all intervals $ [ a , z _ {1} ) $ is a (simply-connected) star-like domain about $ a $, called the star of the function element and denoted by $ S _ {f} $. Analytic continuation in $ S _ {f} $ results in a regular analytic function $ f ( z ) $, which is the univalent branch in $ S _ {f} $ of the complete analytic function generated by the given element.
All points of the boundary $ \partial S _ {f} $ are accessible (cf. Attainable boundary point). In questions of analytic continuation (see also Hadamard theorem) one also defines angular, attainable and well-attainable points of $ \partial S _ {f} $. A point $ z _ {1} \in \partial S _ {f} $ is called an angular boundary point of the star of a function element if its modulus $ | z _ {1} | $ is minimal among all points of $ \partial S _ {f} $ with the same argument $ \mathop{\rm arg} z _ {1} $. A point $ z _ {1} \in \partial S _ {f} $ is called an attainable boundary point of the star if there is a half-disc $ V ( z _ {1} ) $ such that $ f ( z ) $ is regular everywhere inside $ V ( z _ {1} ) $ and at the points of its diameter other than $ z _ {1} $. The point is said to be well-attainable if there is a sector $ V ( z _ {1} ) $ with apex $ z _ {1} $ and angle greater than $ \pi $, such that $ f ( z ) $ is regular in the domain $ \{ V ( z _ {1} ) \cap ( | z - z _ {1} | < \delta ) \} $ for sufficiently small $ \delta > 0 $.
G. Mittag-Leffler showed that a regular function $ f ( z ) $ can be expressed in its star as a series of polynomials convergent inside $ S _ {f} $:
$$ \tag{* } f ( z ) = \sum _ { n=0 } ^ \infty \ \sum _ { \nu = 0 } ^ { {k _ n } } c _ \nu ^ {(n)} \frac{f ^ { ( \nu ) } ( a ) }{\nu ! } ( z - a ) ^ \nu . $$
Formula (*) is known as the Mittag-Leffler expansion in a star. The degrees of the polynomials $ k _ {n} $ and their coefficients $ c _ {0} ^ {(n)} \dots c _ {k _ {n} } ^ {(n)} $, $ n = 0 , 1 \dots $ are independent of the form of $ f ( z ) $ and can be evaluated once and for all. This was done by P. Painlevé (see [2], [3]).
References
[1a] | G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène I" Acta Math. , 23 (1899) pp. 43–62 |
[1b] | G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène II" Acta Math. , 24 (1901) pp. 183–204 |
[1c] | G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène III" Acta Math. , 24 (1901) pp. 205–244 |
[1d] | G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène IV" Acta Math. , 26 (1902) pp. 353–393 |
[1e] | G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène V" Acta Math. , 29 (1905) pp. 101–182 |
[2] | A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian) |
[3] | E. Borel, "Leçons sur les fonctions de variables réelles et les développements en séries de polynômes" , Gauthier-Villars (1905) |
Star of a function element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Star_of_a_function_element&oldid=12951